Лучшие вопросы
Таймлайн
Чат
Перспективы

Квазистатический процесс

Из Википедии, свободной энциклопедии

Квазистатический процесс
Remove ads

Квазистатический процесс в термодинамике — относительно медленный (в пределе — бесконечно медленный) процесс (то есть переход термодинамической системы из одного состояния в другое[1]), длительность протекания которого намного превышает характерные времена релаксации системы[2][K 1]. При этом система проходит через последовательность бесконечно близких квазиравновесных состояний[4][5], и квазистатический процесс может также называться квазиравновесным. Совокупность бесконечно малых квазистатических процессов есть конечный квазистатический процесс[6][K 2].

Thumb
Образующие цикл Карно квазистатические изотермы (1—2 и 3—4) и адиабаты (2—3 и 4—1) на диаграмме Эндрюса в координатах давление — объём
Remove ads

Значение квазистатических процессов

Суммиров вкратце
Перспектива

Т. А. Афанасьева-Эренфест показала (1925), что понятие об обратимости и необратимости процессов имеет лишь косвенное отношение к термодинамике, то есть классическая термодинамика должна, по её мнению, строиться как теория равновесных состояний и квазистатических процессов[6]. Квазистатические процессы по сию пору иногда называют обратимыми лишь в силу восходящей ко временам Клаузиуса традиции[K 3], хотя не всякий квазистатический процесс является обратимым или равновесным[K 4]. Однако в классической термодинамике состояний и идеальных процессов (термостатике)[K 5], термины обратимые процессы и квазистатические процессы часто рассматривают как синонимы[12][13][14][15][16][17][18][19][20][21][22][23].

Медленность квазистатических процессов служит основанием для того, чтобы не учитывать полагаемые равными нулю скорости протекания таких процессов, то есть использование представления о квазистатичности процессов есть способ исключить время из числа переменных, учитываемых классической термодинамикой состояний и идеальных процессов (термостатикой) и рассматривать процесс, то есть изменение состояния системы во времени[24] без использования этой физической величины в качестве термодинамической переменной[25][26][27][28][29][30][31][32][33][34][35]. Время, однако, может входить в термостатические соотношения в качестве параметра[36], например, в формулы вычисления мощности.

Опыт показывает, что число переменных, полностью описывающих равновесное состояние, меньше, чем требуется для описания любого неравновесного состояния[37][38]. Поэтому допущение о квазистатичности реального процесса и связанное с этим сокращение числа принимаемых во внимание переменных существенно упрощает термодинамический анализ рассматриваемого процесса[39][40][41][42][43]. При этом оказывается, что аппроксимация идущего с конечной скоростью реального нестатического процесса его идеализированной бесконечно медленной квазистатической моделью позволяет проводить вычисления с достаточной точностью для большого класса практических задач[44][32]. С другой стороны, выводы, получаемые термодинамикой для квазистатических процессов, носят характер своего рода теорем о предельных значениях термодинамических величин — полезной работы, КПД тепловой машины и т. п.[45]

Remove ads

Условия квазистатичности процесса

Суммиров вкратце
Перспектива

Пусть X — некоторая характеризующая процесс термодинамическая величина. В термостатике для получения количественных зависимостей типа X = … рассматривают только квазистатические процессы[21], тогда как для нестатических процессов термостатика даёт качественные результаты вида X < … или X > … Иными словами, термодинамический процесс является квазистатическим, если характеризующие его величины могут быть найдены методами термостатики[46].

Квазистатические процессы не реализуются в природе, но являются хорошей моделью для процессов, протекающих достаточно медленно по сравнению с процессами установления термодинамического равновесия в системе. Условие «медленности» относительно, а именно, сравнивают время квазистатического изменения значения некоторой термодинамической переменной на величину и время релаксации после мгновенного изменения этого же значения на величину : при квазистатическом изменении переменной [47].

Remove ads

Графическое изображение квазистатических процессов

Поскольку для квазистатических процессов время исключено из числа учитываемых переменных, то такой процесс можно геометрически представить в виде непрерывной кривой на термодинамической поверхности[48][49][50], например на PV-диаграмме Эндрюса[51][K 6]. Изображать графически на термостатических (не содержащих времени термодинамических) диаграммах можно квазиравновесные и только квазиравновесные процессы[56]; нестатические процессы на термостатических диаграммах отобразить нельзя[57][58][55][59]. Встречающееся в литературе графическое изображение на термостатических диаграммах реальных нестатических процессов, протекающих с конечной скоростью, имеет условный характер[60][61][62][63][64], когда нестатический процесс аппроксимируют линией (обычно штриховой или пунктирной[65][66][67][68][69][70]), соединяющей два квазиравновесные состояния[71][67], причём, кроме начальной и конечной, никакая другая точка на этой линии не соответствует промежуточному состоянию термодинамической системы[72][73][74][75].

Виды квазистатических процессов

В термодинамике наиболее часто рассматриваются следующие виды квазистатических процессов:

  • Изохорный процесс — процесс, происходящий при постоянном объёме;
  • Изобарный процесс — процесс, происходящий при постоянном давлении;
  • Изотермический процесс — процесс, в котором температура остается постоянной;
  • Адиабатический процесс Пуассона — процесс, который совершается без подвода или отвода тепла, причем медленно. К примеру, адиабатическое расширение в пустоту не является квазистатическим процессом[76][K 7]. Как и все квазистатические процессы, указанные изменения можно графически изобразить непрерывными линиями, названия которых практически соответствуют названиям самих описываемых процессов — изобарой, изохорой, изотермой и адиабатой.
Remove ads

Терминологические замечания

Суммиров вкратце
Перспектива

Термин "квазистатический" (от лат. quasi — как если бы, подобно + static — статический) был предложен К. Каратеодори в 1909 г.[95] Понятийный аппарат, используемый в том или ином руководстве по классической термодинамике, существенным образом зависит от системы построения/изложения данной дисциплины, используемой автором конкретного пособия. Последователи Р. Клаузиуса строят/излагают термодинамику как теорию обратимых процессов[96], последователи К. Каратеодори — как теорию квазистатических процессов[95], а последователи Дж. У. Гиббса — как теорию равновесных состояний и процессов[97][98]. Ясно, что, несмотря на применение различных описательных дефиниций идеальных термодинамических процессов — обратимых, квазистатических и равновесных, — которыми оперируют упомянутые выше термодинамические аксиоматики, в любой из них все построения классической термодинамики имеют своим итогом один и тот же математический аппарат. Де-факто это означает, что за пределами чисто теоретических рассуждений, то есть в прикладной термодинамике, термины «обратимый процесс», «равновесный процесс» и «квазистатический процесс» рассматривают как синонимы[99]: всякий равновесный (квазистатический процесс) процесс является обратимым, и наоборот, любой обратимый процесс является равновесным (квазистатическим)[100][101][102].

Remove ads

См. также

Комментарии

  1. Разные термодинамические переменные могут иметь для различных систем и процессов существенно разные времена релаксации. Пусть Z — та переменная, для которой время релаксации τmax имеет наибольшее значение (его и принимают за время релаксации всей системы) и которая в рассматриваемом процессе изменяется на величину ΔZ. Тогда процесс считают квазистатическим, если в каждый момент времени τ его скорость много меньше средней скорости изменения переменной Z при релаксации, то есть dZ/dτ << ΔZ/τmax[3].
  2. Может показаться, что к квазистатическому процессу предъявляются взаимоисключающие требования: быть процессом и одновременно быть равновесием, то есть не быть процессом. «Отождествление движения с последовательностью смежных состояний покоя, во время которых движущееся тело находится в равновесии, на первый взгляд кажется абсурдным. Однако движение, составленное из неподвижных состояний, не более и не менее абсурдно, чем длина, составленная из лишенных протяжения точек, или чем время, составленное из не имеющих длительности мгновений» (оригинал[7], перевод[8]).
  3. Замена постулата Клаузиуса его антитезой, физически абсурдной предпосылкой противоположного содержания, не отражается ни на существе получаемых с его помощью результатов, ни на способе их получения[9].
  4. По вопросу о связи между обратимостью и квазистатичностью (равновесностью) у разных авторов нет единой точки зрения. Вот пример в точности противоположных утверждений двух признанных авторитетов по термодинамике: «квазистатический процесс может быть как обратимым, так и необратимым» (И. Дьярмати) и «любой квазистатический процесс обратим и наоборот» (П. Ландсберг)[10]. С И. Дьярмати солидарен Л. И. Седов: «…в ряде распространенных учебников авторы ”доказывают”, без специальных оговорок, неверное утверждение, что всякий равновесный процесс обратим»[11].
  5. Термин классическая термодинамика состояний и идеальных процессов использован с тем, чтобы отличить классическую термодинамику (термостатику) от классической термодинамики реальных (нестатических) процессов.
  6. Именно квазистатичность позволила Клапейрону ввести (1833)[52] в термодинамическую практику наглядное графическое изображение процессов[53][54][55].
  7. Реальные процессы дросселирования (процесс Джоуля — Томсона) и расширения газа в пустоту (процесс Джоуля[77]) необратимы[78][79][80][63][81][82], но при рассмотрении методами термостатики их мысленно заменяют квазистатическими моделями[83], допускающими, помимо прочего, изображение этих процессов на термодинамических диаграммах[84][85][86][87][88][89][90][91][92][93][94].
Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads