Лучшие вопросы
Таймлайн
Чат
Перспективы

Квантовая теория рассеяния

Из Википедии, свободной энциклопедии

Remove ads

Квантовая теория рассеяния — раздел квантовой механики, описывающий рассеяние частиц на изолированном рассеивающем центре. В простейшем случае, этот центр характеризуется потенциалом. Обычно предполагается, что потенциал стремится к нулю по мере удаления от рассеивающего центра.

Постановка задачи

Суммиров вкратце
Перспектива
Thumb
Постановка задачи о квантовом рассеянии

В учебнике Ландау и Лифшица по квантовой механике[1] задача о рассеянии ставится следующим образом.

На силовой центр падает пучок частиц с волновым вектором и плотностью . Измеряется число частиц , которые попадают в детектор в единицу времени:

,

где и сферические углы детектора в системе координат, начало которой помещено в рассеивающий центр (ось направлена вдоль вектора , а — телесный угол, под которым детектор виден из начала координат. Для решения этой задачи рассмотрим стационарное уравнение Шрёдингера:

.

Свободная частица, движущаяся в положительном направлении оси , описывается плоской волной: . Рассеянные частицы описываются вдали от центра расходящейся сферической волной вида , следовательно, будем искать решение уравнения Шрёдингера со следующей асимптотикой на бесконечности:

.

В результате решения этого уравнения мы получим амплитуду рассеяния и, следовательно, эффективное сечение рассеяния . При решении задач рассеяния в квантовой механике широко применяется метод фазовых функций.

Remove ads

Классическое и квантовое рассеяние

Вышеприведенная постановка задачи существенно отличается от классической теории рассеяния, где начальное условие характеризуется прицельным параметром. В квантовой механике понятие траектории теряет смысл, поэтому говорить о прицельном параметре некорректно.

Возможна формулировка задачи о рассеянии, которая допускает единую интерпретацию как в классической, так и в квантовой механике [2]

Обратная задача квантовой теории рассеяния

Суммиров вкратце
Перспектива

Обратная задача квантовой теории рассеяния — определение вида рассеивающего потенциала по известным характеристикам рассеяния в квантовой механике. Имеет большое практическое значение в экспериментальной физике элементарных частиц для интерпретации экспериментальных данных по рассеянию и определения различных характеристик элементарных частиц, не измеряемых непосредственно на опыте[3]

Обратная задача квантовой теории рассеяния решена исчерпывающим образом для случев сферически симметричного потенциала , удовлетворяющего условию , [4][5] а также для одномерного уравнения Шредингера[3] и для систем уравнений с радиальными операторами[6].

Сферически симметричный потенциал определяется по заданной для всех значений волнового вектора одной из фаз S-матрицы . Если соответствующий радиальный оператор Шредингера имеет дискретный спектр, то потенциал определяется по фазе неоднозначно[4]

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads