Лучшие вопросы
Таймлайн
Чат
Перспективы
Кепстр
Из Википедии, свободной энциклопедии
Remove ads
Кепстр — один из видов гомоморфной обработки сигналов[1], функция обратного преобразования Фурье от логарифма спектра мощности сигнала[2]. Кепстр можно записать следующим выражением:
где — спектр входного сигнала.
Аргумент имеет размерность времени, но это особое, кепстральное время, поскольку в любой момент зависит от функции исходного сигнала со спектром заданной при .[3] Иногда называют «сачтота» или «кьюфренси» (анаграммы от рус. частота или англ. frequency).
Кепстр в английском языке имеет два аналога — kepstrum и cepstrum.
Remove ads
Название
Суммиров вкратце
Перспектива
Первые упоминания термина «кепстр» относятся к июню 1962 года, когда Богерт, Хили и Тьюки опубликовали статью с необычным названием «англ. The Quefrency Analysis of Time Series for Echoes: Cepstrum, Pseudo Autocovariance, Cross-Cepstrum and Saphe Cracking»[4][2][5].
В этой статье они заметили, что логарифм спектра мощности колебания, содержащего отраженный сигнал, имеет аддитивную периодическую компоненту, созданную этим сигналом, и поэтому преобразование Фурье от логарифма спектра мощности имеет пик на месте, соответствующем задержке отраженного сигнала[6]. Эту функцию они назвали «кепстром» (англ. cepstrum), изменяя слово «спектр» (spectrum) и объясняя это тем, что «в общем случае мы действуем в частотной области так, как принято действовать во временной, и наоборот»[4]. При этом новое «кепстральное» время было ими названо термином «quefrency» (от англ. frequency), а фаза — «saphe» (от англ. phase)[6].
Позже, в 1969 году Шафер ввёл понятие «комплексного кепстра» (англ. complex cepstrum), опирающегося на использовании информации как о амплитудном, так и о фазовом спектре наблюдаемого сигнала[7]. Метод комплексного кепстра используется для восстановления исходных сигналов из результата их свёртки и был назван методом гомоморфной деконволюции или гомоморфной фильтрации[8].
Первые упоминания термина «kepstrum» относятся к 1978 году, когда Сильвия и Робинсон в своей работе[9] использовали его для обозначения предложенного ими метода анализа сейсмических сигналов. В этом методе используется тот факт, что для минимально фазовых сигналов kepstrum-спектральные коэффициенты могут быть получены непосредственно из оценки спектра мощности. В большинстве случаев вычисления «kepstrum» и «complex cepstrum» коэффициентов дают почти одинаковые результаты. Оба метода сходны в том, что используют обратное БПФ от логарифмического спектра мощности. А различие между ними состоит в том, что метод «kepstrum» характеризуется kepstrum-коэффициентами, полученными из степенных рядов Колмогорова, что обеспечивает получение теоретических значений («истинных» значений). В то время как метод «complex cepstrum» позволяет получить эмпирические значения kepstrum-коэффициентов (оценки величин), используя прямое БПФ[5].
Другими словами, «kepstrum»-последовательности коэффициентов в разложении Колмогорова заменяются коэффициентами «complex cepstrum» обратного БПФ[5].
Коэффициенты «complex cepstrum» являются усечённой версией коэффициентов «kepstrum» и зависят только от длины последовательности данных, а не от статистической вариации[5].
Иногда[5] термин «kepstrum» связывают с именем советского математика А. Н. Колмогорова, которым был предложен[10] специальный функциональный ряд для обработки регулярных стационарных случайных процессов. При этом некоторые авторы считают, что первые буквы слова «kepstrum» могут быть расшифрованными как «Kolmogorov-equation power-series time response»[11][12], в то же время аббревиатура KEPSTR ни в указанной работе[10], ни в других работах А. Н. Колмогорова не встречается.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads