Лучшие вопросы
Таймлайн
Чат
Перспективы
Ковариационная матрица
Из Википедии, свободной энциклопедии
Remove ads
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Ковариационная матрица случайного вектора — квадратная симметрическая неотрицательно определенная матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы — ковариации между компонентами.
Ковариационная матрица случайного вектора является многомерным аналогом дисперсии случайной величины для случайных векторов. Матрица ковариаций двух случайных векторов — многомерный аналог ковариации между двумя случайными величинами.
В случае нормально распределённого случайного вектора ковариационная матрица вместе с математическим ожиданием этого вектора полностью определяют его распределение (по аналогии с тем, что математическое ожидание и дисперсия нормально распределённой случайной величины полностью определяют её распределение)
Remove ads
Определения
Суммиров вкратце
Перспектива
- Пусть , — два случайных вектора размерности и соответственно. Пусть также случайные величины имеют конечный второй момент (дисперсию), то есть . Тогда матрицей ковариации векторов называется
то есть
- ,
где
- Если , то называется матрицей ковариации вектора и обозначается [1]. Такая матрица ковариации является обобщением дисперсии для многомерной случайной величины, а её след — скалярным выражением дисперсии многомерной случайной величины. В связи с этим используется также обозначение — дисперсия случайного вектора. Собственные векторы и собственные числа этой матрицы позволяют оценить размеры и форму облака распределения такой случайной величины, аппроксимировав его эллипсоидом (или эллипсом в двумерном случае).
Remove ads
Свойства матриц ковариации
- Сокращённая формула для вычисления матрицы ковариации:
- .
- Матрица ковариации случайного вектора неотрицательно определена[1]:
- для любых .
- Смена масштаба:
- .
- Если случайные векторы и некоррелированы (), то
- .
- Матрица ковариации аффинного преобразования:
- ,
где — произвольная матрица размера , а .
- Перестановка аргументов:
- Матрица ковариации аддитивна по каждому аргументу:
- ,
- .
- Если и независимы, то
- .
Remove ads
Условная ковариационная матрица
Суммиров вкратце
Перспектива
Ковариационная матрица случайного вектора является характеристикой его распределения. В случае (многомерного) нормального распределения математическое ожидание вектора и его ковариационная матрица полностью определяют его распределение. Характеристиками условного распределения одного случайного вектора при условии заданного значения другого случайного вектора являются соответственно условное математическое ожидание (функция регрессии) и условная ковариационная матрица.
Пусть случайные векторы и имеют совместное нормальное распределение с математическими ожиданиями , ковариационными матрицами и матрицей ковариаций . Это означает, что объединенный случайный вектор подчиняется многомерному нормальному распределению с вектором математического ожидания и ковариационной матрицей, которую можно представить в виде следующей блочной матрицы:
, где
Тогда случайный вектор при заданном значении случайного вектора имеет нормальное распределение (условное) со следующим условным математическим ожиданием и условной ковариационной матрицей:
Первое равенство определяет функцию линейной регрессии (зависимости условного математического ожидания вектора от заданного значения x случайного вектора ), причем матрица — матрица коэффициентов регрессии.
Условная ковариационная матрица представляет собой матрицу ковариаций случайных ошибок линейных регрессий компонентов вектора на вектор .
В случае если — обычная случайная величина (однокомпонентный вектор), условная ковариационная матрица — это условная дисперсия (по существу — случайной ошибки регрессии на вектор ).
Remove ads
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads