Лучшие вопросы
Таймлайн
Чат
Перспективы

Континуум-гипотеза

предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным Из Википедии, свободной энциклопедии

Remove ads

Конти́нуум-гипо́теза (проблема континуума, первая проблема Гильберта) — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет. В частности, это предположение означает, что для любого бесконечного множества действительных чисел всегда можно установить взаимно-однозначное соответствие либо между элементами этого множества и множеством целых чисел, либо между элементами этого множества и множеством всех действительных чисел.

Краткие факты Континуум-гипотеза, Краткое имя или название ...

Если принять аксиому выбора, то континуум-гипотеза равносильна тому, что .

Первые попытки доказательства этого утверждения средствами наивной теории множеств не увенчались успехом, в дальнейшем была показана невозможность доказать или опровергнуть гипотезу в аксиоматике Цермело — Френкеля (как с аксиомой выбора, так и без неё).

Континуум-гипотеза однозначно доказывается в системе Цермело — Френкеля с аксиомой детерминированности (ZF+AD).[1] При этом утверждение в ней неверно; более того, мощность континуума и в ней несравнимы.[2]

Remove ads

История

Суммиров вкратце
Перспектива

Континуум-гипотеза стала первой из двадцати трёх математических проблем, о которых Гильберт доложил на II Международном Конгрессе математиков в Париже в 1900 году. Поэтому континуум-гипотеза известна также как первая проблема Гильберта.

В 1940 году Гёдель доказал, что отрицание континуум-гипотезы недоказуемо в ZFC — системе аксиом Цермело — Френкеля с аксиомой выбора, а в 1963 году Коэн с помощью разработанного им метода форсинга[англ.] доказал, что континуум-гипотеза также недоказуема в ZFC[3]. Оба эти результата опираются на предположение о непротиворечивости ZFC, причём оно является необходимым, так как в противоречивой теории любое утверждение является тривиально доказуемым. Таким образом, континуум-гипотеза является независимой от ZFC.

В предположении отрицания континуум-гипотезы имеет смысл задавать вопрос: для каких ординалов может выполняться равенство ? Ответ на этот вопрос даёт доказанная в 1970 году теорема Истона[англ.].

Remove ads

Эквивалентные формулировки

Суммиров вкратце
Перспектива

Известно несколько утверждений, эквивалентных континуум-гипотезе:

  • Прямая может быть раскрашена в счётное количество цветов так, что ни для какой одноцветной четвёрки чисел не выполняется условие [4].
  • Плоскость может быть полностью покрыта счётным семейством множеств, каждое из которых имеет вид (то есть имеет единственную точку пересечения с каждой вертикальной прямой) или (имеет единственную точку пересечения с каждой горизонтальной прямой)[5].
  • Пространство можно разбить на 3 множества так, что они пересекаются с любой прямой, параллельной осям , и , соответственно, лишь в конечном числе точек (каждому множеству соответствует своя ось)[6].
  • Пространство можно разбить на 3 множества так, что для каждого из них существует такая точка , что это множество пересекается с любой прямой, проходящей через , лишь в конечном числе точек[7].
Remove ads

Вариации и обобщения

Обобщённая континуум-гипотеза (GCH) утверждает, что для любого бесконечного кардинала не существует кардинала между и . Обобщённая континуум-гипотеза также не противоречит аксиоматике Цермело — Френкеля, и, как показали Серпинский в 1947 году и Шпеккер в 1952 году, из неё следует аксиома выбора.[8] GCH независима от CH как в ZF, так и в ZFC. GCH в ZF следует из аксиомы конструктивности.

Алеф-гипотезой (AH) называется утверждение, что для любого алефа выполнено . Данное утверждение эквивалентно GCH в ZFC, поэтому очень часто именно его называют обобщённой континуум гипотезой. В ZF обобщённая континуум гипотеза в точности эквивалентна AC+AH.[9]

В ZFC обобщённая континуум-гипотеза (а значит и алеф-гипотеза) эквивалентна утверждению, что в любом множестве, превосходящем по мощности некоторое бесконечное множество , найдётся подмножество, равномощное булеану [10].

Специальной алеф-гипотезой (AH(0)) называют утверждение . Это утверждение эквивалентно обычной континуум-гипотезе в ZFC, из-за чего очень часто континуум-гипотезу формулируют именно так. Однако в ZF они неэквивалентны: AH(0) независима от CH в ZF. По этим причинам в ZF часто ошибочно подразумевают под континуум-гипотезой именно специальную алеф-гипотезу. AH(0) влечёт CH. В ZF+AD континуум-гипотеза выполняется, но специальная алеф-гипотеза неверна.

Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads