Лучшие вопросы
Таймлайн
Чат
Перспективы
Космическое материаловедение
Из Википедии, свободной энциклопедии
Remove ads
Космическое материаловедение — раздел междисциплинарной науки материаловедения, изучающий свойства материалов в космическом пространстве.
Основные направления исследований
- Радиационная стойкость и защита. Изучение изменения свойств материалов под воздействием солнечного ветра и при нахождении в радиационных поясах Земли[1]
- Механическая стойкость воздействию микрометеорных частиц[1]
- Испарение материалов в глубоком вакууме[2]
- Воздействие собственной внешней атмосферы космических аппаратов на их материалы и оборудование[1]
- Коррозия в условиях вакуума и/или невесомости[2]
- Изучение свойств материалов в условиях экстремально низких и высоких температур, а также в условиях изменения температуры в широких диапазонах.[2]
Remove ads
Радиолюминесценция стекла
При использовании оптических линз в космическом пространстве может возникать свечение внешней линзы, вызванное космическим ионизирующим излучением, что служит помехой основному оптическому сигналу. Поэтому изучение свечения, возникающего в стёклах различных типов под действием космического излучения, имеет большую важность.[1]
Люминесцентную способность стёкол определяют следующие компоненты: окиси кремния SiO2, бария BaO и свинца PbO. Другие компоненты практически не влияют на радиолюминесценцию стекла.[1]
Стёкла можно разделить на ряд групп по-оптическим свойствам. Основными из этих групп являются «кроны», т.е. стёкла типов К, ЛК, БК и ТК; и «флинты», т.е. стёкла типов Ф, ЛФ, КФ, БФ и ТФ.[1]:87
После облучения заметная люминесценция наблюдается у стёкол первой группы на протяжении нескольких месяцев. Под действием высоких температур яркость свечения снижается. Происходит, так называемое, температурное тушение люминесценции.[1]:88
Remove ads
Разрушение материалов атомарным кислородом и ультрафиолетовым излучением
Суммиров вкратце
Перспектива
Остаточная атмосфера на низких орбитах состоит в основном из атомов кислорода (80%) и молекул азота N2 (20%). Большая часть кислорода на больших высотах диссоциирует под воздействием космического ультрафиолета (λ~121,6 нм). Плотность потока частиц зависит от солнечной активности, высоты и угла наклона орбиты и других факторов.[1]:124 Поэтому некоторые металлы, в первую очередь Ag, Os, а также углерод и органические материалы, подвержены сильному окислению и эрозии.[1]:126
Материалы наиболее подверженные эрозии под воздействием атомарного кислорода:[1]:127
- Композитные материалы с полимерной основой, графито-эпоксидные композиты, термопластическая резина.
- Твердые смазки: MoS2; мягкие металлы (Ag; Pb; In).
- Терморегулирующие покрытия (ТРП) — металлизированные полимеры (Al-тефлон, Al-каптон), органические краски (белые и чёрные).
- Оптические материалы:
- металлические покрытия: Ag, Al, Ni, Au, Ta, Ti, Zr
- диэлектрические покрытия: MgF2; CaF2.
- Компоненты космической энергетики — солнечные батареи, каптоновые плёнки, серебряные контакты, стеклянные волоконные композиты.
- Отражатели — кремний, акрилы, фтористые полимеры, поликарбонаты, Ag, Al. Защитные покрытия материалов: Ni, SiO2, TiO2, Al2O3, ZnO, Ni/SiO2, ITO, In2O3.
При контакте серебра с атомарным кислородом на его поверхности возникает оксидная плёнка, с высокими внутренними напряжениями, из-за которых она лопается и отслаивания от поверхности. Это приводит к потере массы и загрязнению окружающего пространства частицами AgO.[1]:140
Для снижения скорости разрушения поверхностных материалов их покрывают тонкими (1 мкм), устойчивым к эрозии защитным слоем, неорганическим (SiO2, Al2O3, MgF2, Si3N4), или полимерным (тефлон, силикон и др.). Защитный слой позволяет уменьшить потерю массы в 10-100 раз.[1]:137
Remove ads
Примечания
Литература
См. также
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads