Лучшие вопросы
Таймлайн
Чат
Перспективы

Лемма Шрайера

Из Википедии, свободной энциклопедии

Remove ads

Лемма Шрайера — теорема из теории групп, использующаяся в алгоритме Шрайера-Симса. Теорема была доказана Отто Шрайером в 1927 году[1].

Из теоремы следует, что у конечно порождённой группы любая подгруппа с конечным индексом также является конечно порождённой[2].

Формулировка

Пусть  — некоторая подгруппа конечно порождённой группы с порождающим множеством , то есть, .

Пусть  — трансверсаль левых смежных классов . Обозначим через представителя смежного класса, в котором содержится .

В таких обозначениях подгруппа порождена множеством .

Remove ads

Доказательство

Формулировка для орбит

В алгоритме Шрайера — Симса теорема применяется для специфического случая когда действует на множестве и является стабилизатором некоторого элемента .

Между элементами орбиты и трансверсалью есть взаимо-однозначное соответствие. А именно, все элементы одного смежного класса переводят в один и тот же элемент орбиты.

Поэтому обозначим через элемент , который переводит в , то есть, . В таких обозначениях лемму можно записать следующим образом: .

Remove ads

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads