Лучшие вопросы
Таймлайн
Чат
Перспективы

Лемма Шуры-Буры

Из Википедии, свободной энциклопедии

Remove ads

Лемма Шуры-Буры — принятое в научной школе П. С. Александрова название для следующего элементарного утверждения общей топологии, касающегося свойств компактных пространств:

Пусть  — открытое подмножество компактного пространства , а  — некоторое семейство замкнутых (и, следовательно, компактных) подмножеств этого пространства. Если , то существует конечное множество , такое, что .

Более краткая формулировка леммы Шуры-Буры (в терминах неиндексированных семейств множеств):

Пусть  — открытое подмножество компактного пространства , а  — некоторое семейство замкнутых (и, следовательно, компактных) подмножеств этого пространства, такое, что . Тогда для некоторого конечного подсемейства .

Для доказательства леммы Шуры-Буры достаточно заметить, что семейство, состоящее из указанных в её формулировке множества и из дополнений элементов семейства , является открытым покрытием пространства и извлечь из этого покрытия конечное подпокрытие.

Свойство, указанное в лемме Шуры-Буры, на самом деле характеризует компактные пространства.[1]

Remove ads

Обобщения леммы Шуры-Буры

Суммиров вкратце
Перспектива

Лемму Шуры-Буры можно обобщить на произвольные (не обязательно компактные) пространства, потребовав, чтобы рассматриваемое в ней семейство замкнутых множеств содержало хотя бы одно компактное[2]:

Пусть  — открытое подмножество пространства , а  — некоторое семейство замкнутых подмножеств этого пространства, хотя бы одно из которых компактно, причём . Тогда для некоторого конечного подсемейства .

В предположении хаусдорфовости лемма Шуры-Буры допускает следующее существенное усиление[3]:

Пусть  — открытое подмножество хаусдорфова пространства , а  — некоторое семейство компактных подмножеств этого пространства, такое, что . Тогда найдутся конечное семейство и конечное семейство открытых в множеств, обладающие следующими свойствами:
а) для ;
б) .
Remove ads

Лемма Шуры-Буры и компоненты связности компакта

Лемма Шуры-Буры закрепилась как отдельное утверждение с данным названием в монографиях П. С. Александрова[4][5], где оно использовалось в качестве вспомогательного для доказательства следующей фундаментальной теоремы, принадлежащей М. Р. Шуре-Буре (1941)[6]:

Компонента связности каждой точки хаусдорфова компактного пространства совпадает с её квазикомпонентой[7].

Некоторые авторы называют эту последнюю теорему также «леммой Шуры-Буры»[8]. Для случая метрических компактов она была ранее доказана Ф. Хаусдорфом (1914)[9].

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads