Лучшие вопросы
Таймлайн
Чат
Перспективы

Математическая формулировка общей теории относительности

Из Википедии, свободной энциклопедии

Remove ads

В этой статье рассматривается математический базис общей теории относительности.

Исходные положения

Наше интуитивное восприятие указывает нам, что пространство-время является регулярным и непрерывным, то есть не имеет «дыр». Математически эти свойства обозначают, что пространство-время будет моделироваться гладким дифференцируемым многообразием 4 измерений , то есть пространством размерности 4, для которого окрестность каждой точки походит локально на четырёхмерное евклидово пространство. Гладкость здесь означает достаточную дифференцируемость, пока без уточнения её степени.

Так как кроме того с хорошей точностью выполняются законы специальной теории относительности, то такое многообразие можно наделить лоренцевой метрикой, то есть невырожденным метрическим тензором с сигнатурой (или, что эквивалентно, ). Значение этого раскрывается в следующем разделе.

Remove ads

Геометрия пространства-времени

Суммиров вкратце
Перспектива

NB Эта статья следует классическим соглашениям знаков Мизнера, Торна и Уилера[1]

В этой статье принимается также соглашение Эйнштейна для суммирования по повторяющимся индексам.

Метрический тензор

Дифференцируемое многообразие[2] M, снабжённое лоренцевым метрическим тензором g, и представляет собой таким образом Лоренцево многообразие, которое составляет частный случай псевдориманова многообразия (определение «лоренцев» будет уточнено дальше в тексте; см. ниже раздел Лоренцева метрика).

Возьмём какую-нибудь систему координат в окрестности точки , и пусть  — локальный базис в касательном пространстве к многообразию в точке . Касательный вектор запишется тогда как линейная комбинация базисных векторов:

При этом величины называются контравариантными компонентами вектора w. Метрический тензор тогда — симметричная билинейная форма:

где через обозначен дуальный по отношению к базис в кокасательном пространстве , то есть такие линейные формы на , что:

Далее будем предполагать, что компоненты метрического тензора меняются в пространстве-времени непрерывно[3].

Метрический тензор, таким образом, может быть представлен действительной симметричной матрицей 4x4:

Вообще любая действительная матрица 4x4 имеет априори 4 x 4 = 16 независимых элементов. Условие симметрии уменьшает это число до 10: на самом деле, остаётся 4 диагональных элемента, к которым надо добавить (16 — 4)/2 = 6 недиагональных элементов. Тензор обладает, таким образом, только 10 независимыми компонентами.

Скалярное произведение

Метрический тензор определяет для каждой точки многообразия псевдо-скалярное произведение («псевдо-» в том смысле, что отсутствует положительная определённость ассоциированной квадратичной формы (квадрата вектора); см. Лоренцева метрика) в касательном к многообразию в точке псевдоевклидовом пространстве . Если и  — два вектора , их скалярное произведение запишется как:

В частности, взяв два базисных вектора, получаем компоненты:

Замечание: если величины обозначают контравариантные компоненты вектора w, то можно определить также его ковариантные компоненты как:

Элементарное расстояние — интервал

Рассмотрим вектор элементарного перемещения между точкой и бесконечно близкой точкой: . Инвариантной инфинитезимальной нормой этого вектора будет действительное число, обозначаемое , называемое квадратом интервала, и равное:

.

Если обозначить компоненты вектора элементарного перемещения «по-физически» , инфинитезимальный квадрат длины (интервала) запишется формально как:

Внимание: в этой формуле, а также и далее, представляет собой действительное число, которое интерпретируется физически как «инфинитезимальное изменение» координаты , а не как дифференциальная форма!

Лоренцева метрика

Уточним теперь выражение «лоренцева» (точнее локально лоренцева), которое означает, что метрический тензор имеет сигнатуру (1,3) и локально совпадает в первом порядке с лоренцевой метрикой специальной теории относительности. Принцип эквивалентности утверждает, что можно «стереть» локально поле гравитации, выбирая локально инерциальную систему координат. С математической точки зрения такой выбор является переформулировкой известной теоремы о возможности приведения квадратичной формы к главным осям.

В такой локально инерциальной системе координат инвариант в точке запишется как:

где является метрикой пространства-времени Минковского, а в малой окрестности этой точки

где имеет минимум второй порядок малости по отклонениям координат от точки , то есть . Принимая соглашение знаков Мизнера, Торна и Уилера, имеем[1]:

Далее используются следующие обычные соглашения:

  • греческие индексы меняются от 0 до 3. Они соответствуют величинам в пространстве-времени.
  • латинские индексы меняются от 1 до 3. Они соответствуют пространственным составляющим величин в пространстве-времени.

Например, 4-вектор положения запишется в локально инерциальной системе координат как:

Внимание: на самом деле конечные, а не инфинитезимальные приращения координат не образуют вектора. Вектор из них возникает лишь в однородном пространстве нулевой кривизны и тривиальной топологии.

Лоренцев характер многообразия обеспечивает, таким образом, то, что касательные к в каждой точке псевдоевклидова пространства будут обладать псевдоскалярными произведениями («псевдо-» в том смысле, что отсутствует положительная определённость ассоциированной квадратичной формы (квадрата вектора)) с тремя строго положительными собственными значениями (соответствующими пространству) и одним строго отрицательным собственным значением (соответствующим времени). В частности, элементарный интервал «собственного времени», отделяющий два последовательных события, всегда:

Общие понятия аффинной связности и ковариантной производной

Обобщенно, аффинной связностью называется оператор , который приводит в соответствие векторному полю из касательного пучка поле эндоморфизмов этого пучка. Если  — касательный вектор в точке , обычно обозначают

Говорят, что является «ковариантной производной» вектора в направлении . Предположим к тому же, что удовлетворяет дополнительному условию: для любой функции f справедливо

Ковариантная производная удовлетворяет следующим двум свойствам линейности:

  • линейность по w, то есть, какими бы ни были поля векторов w и u и действительные числа a и b, мы имеем:
  • линейность по V, то есть, какими бы ни были поля векторов X и Y и действительные числа a и b, мы имеем:

Как только ковариантная производная определена для полей векторов, она может быть распространена на тензорные поля с использованием правила Лейбница: если и  — два любых тензора, то по определению:

Ковариантная производная поля тензора вдоль вектора w есть снова поле тензора того же типа.

Связность, ассоциированная с метрикой

Можно доказать, что связность, ассоциированная с метрикой — связность Леви-Чивиты , является единственной связностью, помимо предыдущих условий дополнительно обеспечивающей то, что для любых полей векторов X, Y, Z из TM

  • (метричность — тензор неметричности равен нулю).
  • , где  — коммутатор Ли от X и Y (отсутствие кручения — тензор кручения равен нулю).

Описание в координатах

Ковариантная производная вектора есть вектор, и, таким образом, она может быть выражена как линейная комбинация всех базисных векторов:

где представляют собой компоненты вектора ковариантной производной в направлении (эта составляющая зависит от выбранного вектора w).

Чтобы описать ковариантную производную, достаточно описать её для каждого из базисных векторов вдоль направления . Определим тогда символы Кристоффеля (или просто кристоффели) зависящие от 3 индексов[4]

Связность Леви-Чивиты полностью характеризуется своими символами Кристоффеля. Согласно общей формуле

для вектора V:

Зная, что , получаем:

Первый член этой формулы описывает «деформацию» системы координат по отношению к ковариантной производной, а второй — изменения координат вектора V. При суммировании по немым индексам мы можем переписать это соотношение в форме

Из этого получаем важную формулу для компонент:

Используя формулу Лейбница, таким же образом можно продемонстрировать, что:

Чтобы вычислить эти составляющие в явной форме, выражения для символов Кристоффеля должны быть определены, исходя из метрики. Их легко получить, написав следующие условия:

Расчёт этой ковариантной производной приводит к

где  — компоненты «обратного» метрического тензора, определенные уравнениями

Символы Кристоффеля «симметричны»[5] по отношению к нижним индексам:

Замечание: иногда определяются также следующие символы:

получаемые как:

Тензор кривизны Римана

Тензор кривизны Римана R — тензор 4-й валентности, определённый для любых векторных полей X, Y, Z из M как

Его компоненты в явной форме выражаются из метрических коэффициентов:

Симметрии этого тензора:

Он удовлетворяет также следующему соотношению:

Тензор кривизны Риччи

Тензор Риччи — тензор валентности 2, определенный свёрткой тензора кривизны Римана

Его компоненты в явном виде через символы Кристоффеля:

Этот тензор симметричен: .

Скалярная кривизна

Скалярная кривизна является инвариантом, определяемым свёрткой тензора Риччи с метрикой

Remove ads

Уравнения Эйнштейна

Суммиров вкратце
Перспектива

Уравнения гравитационного поля, которые называются уравнениями Эйнштейна, записываются так

или так

где  — космологическая константа,  — скорость света в вакууме,  — гравитационная постоянная, которая появляется также в законе всемирного тяготения Ньютона,  — тензор Эйнштейна, а  — тензор энергии-импульса.

Симметричный тензор имеет только 10 независимых составляющих, тензорное уравнение Эйнштейна в заданной системе координат эквивалентно системе 10 скалярных уравнений. Эта система 10 связанных нелинейных уравнений в частных производных в большинстве случаев очень трудна для изучения.

Remove ads

Тензор энергии-импульса

Суммиров вкратце
Перспектива

Тензор энергии-импульса может быть записан в виде действительной симметричной матрицы 4x4:

В нём обнаруживаются следующие физические величины:

  • T00 — объёмная плотность энергии. Она должна быть положительной.
  • T10, T20, T30 — плотности компонент импульса.
  • T01, T02, T03 — компоненты потока энергии.
  • Под-матрица 3 x 3 из чисто пространственных компонент:

— матрица потоков импульсов. В механике жидкости диагональные компоненты соответствуют давлению, а прочие составляющие — тангенциальным усилиям (напряжениям или в старой терминологии — натяжениям), вызванным вязкостью.

Для жидкости в покое тензор энергии-импульса сводится к диагональной матрице , где есть плотность массы, а  — гидростатическое давление.

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads