Лучшие вопросы
Таймлайн
Чат
Перспективы

Микроскоп

Из Википедии, свободной энциклопедии

Микроскоп
Remove ads

Микроско́п (др.-греч. μικρός «маленький» + σκοπέω «смотрю»[2]) — оптический прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом.

Thumb
Микроскоп Левенгука XVII века с увеличением до 30x[1].

Совокупность технологий и методов практического использования микроскопов называют микроскопией.

Remove ads

История создания

Первые микроскопы, изобретённые человечеством, были оптическими, и первого их изобретателя не так легко выделить и назвать. Возможность скомбинировать две линзы так, чтобы достигалось большее увеличение, впервые предложил в 1538 году итальянский врач Дж. Фракасторо. Самые ранние сведения о микроскопе относят к 1590 году и городу Мидделбург, что в Зеландии, и связывают с именами Иоанна Липперсгея (который также разработал первый простой оптический телескоп) и Захария Янсена, которые занимались изготовлением очков[3]. Чуть позже, в 1624 году, Галилео Галилей представляет свой составной микроскоп, который он первоначально назвал «оккиолино»[4] (occhiolino итал. — маленький глаз). Годом спустя его друг по Академии Джованни Фабер[англ.] предложил для нового изобретения термин микроскоп.

Remove ads

Разрешающая способность

Разрешающая способность микроскопа — это способность выдавать чёткое раздельное изображение двух близко расположенных точек объекта. Степень проникновения в микромир, возможности его изучения зависят от разрешающей способности прибора. Эта характеристика определяется прежде всего длиной волны используемого в микроскопии излучения (видимое, ультрафиолетовое, рентгеновское излучение). Фундаментальное ограничение заключается в невозможности получить при помощи электромагнитного излучения изображение объекта, меньшего по размерам, чем длина волны этого излучения.

«Проникнуть глубже» в микромир возможно при применении излучений с меньшими длинами волн.

Remove ads

Классификация

Суммиров вкратце
Перспектива
Thumb
Иллюстрация работы различных микроскопов

Оптические микроскопы

Thumb
Современный металлографический микроскоп Альтами МЕТ 3М

Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, то есть наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличны один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет ~0,2 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины.

До середины XX века работали только с видимым оптическим излучением, в диапазоне 400—700 нм, а также с ближним ультрафиолетом (люминесцентный микроскоп). Оптические микроскопы не могли давать разрешающей способности менее полупериода волны опорного излучения (диапазон длин волн 0,2—0,7 мкм, или 200—700 нм). Таким образом, оптический микроскоп способен различать структуры с расстоянием между точками до ~0,20 мкм, поэтому максимальное увеличение, которого можно было добиться, составляло ~2000 крат.

Электронные микроскопы

Thumb
Электронный микроскоп. Модель 1960-х годов

Пучок электронов, которые обладают свойствами не только частицы, но и волны, может быть использован в микроскопии.

Длина волны электрона зависит от его энергии, а энергия электрона равна , где  — разность потенциалов, проходимая электроном,  — заряд электрона. Длины волн электронов при прохождении разности потенциалов 200 000 В составляет порядка 0,1 нм. Электроны легко фокусировать электромагнитными линзами, так как электрон — заряженная частица. Электронное изображение может быть легко переведено в видимое.

Разрешающая способность электронного микроскопа в 1000—10 000 раз превосходит разрешение традиционного светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема.

Сканирующие зондовые микроскопы

Сканирующие зондовые микроскопы (СЗМ) — класс микроскопов, основанных на сканировании поверхности зондом. На СЗМ изображение получают путём регистрации взаимодействий между зондом и поверхностью. На данном этапе развития возможно регистрировать взаимодействие зонда с отдельными атомами и молекулами, благодаря чему СЗМ по разрешающей способности сопоставимы с электронными микроскопами, а по некоторым параметрам превосходят их.

Рентгеновские микроскопы

Рентге́новский микроско́п — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра.

Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров[6].

Remove ads

Микроскопы до XX века

Галерея оптических микроскопов

Узлы и механизмы оптического микроскопа

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads