Лучшие вопросы
Таймлайн
Чат
Перспективы

Геодезические задачи

математическая задача, связанная с определением взаимного положения точек (координат) принадлежащих какой-либо поверхности Из Википедии, свободной энциклопедии

Remove ads

Геодезическая задача — математическая задача, связанная с определением взаимного положения точек (координат) принадлежащих какой-либо поверхности. Геодезические задачи подразделяются на прямую, обратную и задачу Потенота.[1]

Прямая геодезическая задача (ПГЗ)

Суммиров вкратце
Перспектива

Прямая геодезическая задача (прямая линейно-угловая засечка) заключается в том, что по известным координатам одной точки, вычисляют координаты другой точки, для чего необходимо знать горизонтальное проложение (длину) линии между этими точками и ориентирный (дирекционный) угол этой линии.

Решение прямой геодезической задачи выполняется по формулам:[2]

Далее определяются приращениями координат из решения прямоугольных треугольников.

Remove ads

Обратная геодезическая задача (ОГЗ)

Суммиров вкратце
Перспектива

Обратная геодезическая задача заключается в том, что по известным координатам двух точек вычисляют горизонтальное проложение (длину) линии между этими точками и дирекционный угол этой линии.

Дирекционный угол направления на ориентир может быть вычислен путём решения обратной геодезической задачи если известны плоские прямоугольные координаты исходной точки и ориентира.

Решение обратной геодезической задачи выполняется в следующем порядке:

1) вычисляют приращения координат:

2) из решения прямоугольного треугольника определяют румб линии:

.

откуда

3) по знакам приращений координат и по известному румбу линии определяют дирекционный угол линии

Подробнее Знак приращения ...

4) определяют горизонтальное проложение (длину линии)

.[3]

Remove ads

Задача Потенота

Задача Потенота (обратная геодезическая засечка) — одна из классических математических задач определения местоположения точки на местности по трём ориентирам с известными координатами; возникает, например, при определении местоположения корабля в море по трём маякам, расстояние до которых неизвестно. Имеет более 100 аналитических и графических способов решения и является частным случаем более общей задачи трилатерации. Приобрела важное практическое значение в самых разных областях (геодезии, навигации, корректировке ракетно-артиллерийского огня[4]) и не потеряла актуальности по настоящее время.

Примечания

Дополнительная литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads