Лучшие вопросы
Таймлайн
Чат
Перспективы
Геодезические задачи
математическая задача, связанная с определением взаимного положения точек (координат) принадлежащих какой-либо поверхности Из Википедии, свободной энциклопедии
Remove ads
Геодезическая задача — математическая задача, связанная с определением взаимного положения точек (координат) принадлежащих какой-либо поверхности. Геодезические задачи подразделяются на прямую, обратную и задачу Потенота.[1]
Прямая геодезическая задача (ПГЗ)
Суммиров вкратце
Перспектива
Прямая геодезическая задача (прямая линейно-угловая засечка) заключается в том, что по известным координатам одной точки, вычисляют координаты другой точки, для чего необходимо знать горизонтальное проложение (длину) линии между этими точками и ориентирный (дирекционный) угол этой линии.
Решение прямой геодезической задачи выполняется по формулам:[2]
Далее определяются приращениями координат из решения прямоугольных треугольников.
Remove ads
Обратная геодезическая задача (ОГЗ)
Суммиров вкратце
Перспектива
Обратная геодезическая задача заключается в том, что по известным координатам двух точек вычисляют горизонтальное проложение (длину) линии между этими точками и дирекционный угол этой линии.
Дирекционный угол направления на ориентир может быть вычислен путём решения обратной геодезической задачи если известны плоские прямоугольные координаты исходной точки и ориентира.
Решение обратной геодезической задачи выполняется в следующем порядке:
1) вычисляют приращения координат:
2) из решения прямоугольного треугольника определяют румб линии:
.
откуда
3) по знакам приращений координат и по известному румбу линии определяют дирекционный угол линии
4) определяют горизонтальное проложение (длину линии)
.[3]
Remove ads
Задача Потенота
Задача Потенота (обратная геодезическая засечка) — одна из классических математических задач определения местоположения точки на местности по трём ориентирам с известными координатами; возникает, например, при определении местоположения корабля в море по трём маякам, расстояние до которых неизвестно. Имеет более 100 аналитических и графических способов решения и является частным случаем более общей задачи трилатерации. Приобрела важное практическое значение в самых разных областях (геодезии, навигации, корректировке ракетно-артиллерийского огня[4]) и не потеряла актуальности по настоящее время.
Примечания
Дополнительная литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads