Лучшие вопросы
Таймлайн
Чат
Перспективы

Орбитально-топологическая эквивалентность

Из Википедии, свободной энциклопедии

Remove ads

В теории обыкновенных дифференциальных уравнений, два векторных поля (или соответствующих автономных уравнения) называются орбита́льно-топологи́чески эквивале́нтными, если существует гомеоморфизм фазового пространства одной системы на фазовое пространство другой системы, переводящий ориентированные фазовые кривые первой системы в фазовые кривые второй системы с сохранением ориентации.[1]

Примеры

  • Нелинейный устойчивый узел орбитально-топологически эквивалентен своей линейной части в окрестности особой точки.
  • Устойчивый узел не является орбитально-топологически эквивалентным неустойчивому узлу, получающемуся из него обращением времени.
  • Гиперболическая особая точка орбитально-топологически эквивалентна своей линейной части в окрестности особой точки (Теорема Гробмана-Хартмана).

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads