Лучшие вопросы
Таймлайн
Чат
Перспективы
Ориентированная раскраска графа
Из Википедии, свободной энциклопедии
Remove ads
Ориентированная раскраска графа — это специальный вид раскраски графов. А именно, это назначение цветов вершинам ориентированного графа[1], которое
- правильное — никакие две смежные вершины не получают один и тот же цвет,
- сохраняется ориентация — если (x, y) и (u, v) являются дугами в графе, то недопустимо, чтобы цвета вершин x и v, а также цвета вершин y и u совпадали.
Другое определение: Ориентированная k-раскраска орграфа H есть ориентированный гомоморфизм в k-вершинный орграф H*[2].
Remove ads
Ориентированное хроматическое число
Ориентированное хроматическое число орграфа G — минимальное число цветов, необходимое в ориентированной раскраске. Это число обычно обозначается как . То же самое определение может быть распространено на неориентированные графы путём определения ориентированного хроматического числа неориентированного графа как максимального хроматического числа из всех его ориентаций[3][2].
Remove ads
Примеры
Ориентированное хроматическое число ориентированного цикла с 5 вершинами равно пяти. Если цикл раскрасить в четыре и менее цвета, то либо две смежные вершины окажутся выкрашены одинаково, либо две вершины через одну будут иметь один цвет. В последнем случае рёбра, соединяющие эти две вершины с вершиной посередине, будут неправильно раскрашены (второе правило) — обе дуги имеют одинаково выкрашенные концы, но соединяют цвета в обратном направлении. Таким образом, никакой раскраски с четырьмя и менее цветами невозможно. Если же все вершины выкрасить в разные цвета, получим допустимую ориентированную раскраску.
Remove ads
Свойства
Ориентированная раскраска может существовать только для орграфов без петель и без ориентированных 2-циклов, поскольку петля даёт один цвет на обоих концах дуги, а 2-цикл недопустим по второму правилу — два цвета соединены в противоположных направлениях. Если указанные условия выполняются, всегда существует ориентированная раскраска, например, если назначить всем вершинам различные цвета.
Если ориентированная раскраска является полной, в смысле, что никакие два цвета не могут быть слиты в один цвет с получением правильной раскраски, то раскраска соответствует единственному гомоморфизму в турнир. Турнир имеет по одной вершине для каждого цвета в раскраске. Для каждой пары цветов имеется дуга в раскрашенном графе с этими двумя цветами на концах, которая соответствует ориентации ребра в турнире между вершинами соответствующих цветов. Неполные раскраски также могут быть представлены гомоморфизмом в турнир, но в этом случае соответствие между раскрасками и гомоморфизмами не будет один-к-одному.
Неориентированные графы с ограниченным родом, ограниченной степенью или ограниченным ациклическим хроматическим числом также имеют ограниченное ориентированное хроматическое число[3].
Оценки ориентированного хроматического числа
Суммиров вкратце
Перспектива
Ориентированное хроматическое число графа может существенно отличаться от его (обычного) хроматического числа. Например, существуют двудольные графы с произвольно большим ориентированным хроматическим числом, достаточно заменить каждое ребро графа на путь длиной 2, и тогда концы каждого такого пути в полученном графе обязаны краситься в разные цвета[4].
Курсель[5] доказал, что для любого плоского графа, а Распуд и Соупина[6] улучшили результат до 80. Бородин с соавторами опубликовали следующую теорему[7]:
Теорема: Пусть G — плоский граф обхвата g, тогда
(1)
(2)
(3)
(4)
В другой статье Бородина[8] ограничение в (1) теоремы было ослаблено до 13.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads