Лучшие вопросы
Таймлайн
Чат
Перспективы
Ортоцентроидная окружность
Из Википедии, свободной энциклопедии
Remove ads
Ортоцентроидная окружность неравностороннего треугольника — это окружность, построенная на отрезке, соединяющем его ортоцентр и центроид, как на диаметре. Этот диаметр также содержит центр описанной окружности и центр окружности девяти точек треугольника и является частью прямой Эйлера.

Гвинанд (Guinand) в 1984 г. показал, что инцентр треугольника должен лежать внутри ортоцентроидной окружности, но не совпадать с центром девяти точек; то есть он должен попадать в открытый ортоцентроидный диск с вырезанным внутри центром девяти точек[1][2][3][4] [5]:pp. 451–452.
Более того[2], точка Ферма, точка Жергонна и точка Лемуана лежат в открытом ортоцентроидном диске с вырезанным внутри своим собственным центром (и могут быть в любой точке внутри него), тогда как вторая точка Ферма находится снаружи ортоцентроидного круга (и также может быть в любой точке снаружи). Возможные положения первой и второй точек Брокара также находятся в открытом ортоцентроидном диске[6].
Квадрат диаметра ортоцентроидной окружности равен[7]:p.102 где a, b и c — длины сторон треугольника, D — диаметр описанной окружности.
Remove ads
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads