Лучшие вопросы
Таймлайн
Чат
Перспективы

Поверхность Морина

Из Википедии, свободной энциклопедии

Поверхность Морина
Remove ads

Поверхность Морина является промежуточной моделью выворачивания сферы, открытой Бернардом Морином. Поверхность обладает четырёхкратной вращательной симметрией.

Thumb
Поверхность Морина, вид сверху
Thumb
Поверхность Морина, вид сбоку
Thumb
Бумажное выворачивание сферы и поверхность Морина
Thumb
Бумажная поверхность Морина (промежуточное состояние выворачивания сферы) с шестиугольной симметрией

Если у исходной сферы, которую следует вывернуть, внешняя сторона выкрашена зелёным, а внутренняя красным цветами, то при преобразовании сферы путём гомотопии в поверхность Морина половина видимой извне поверхности Морина будет зелёной, а другая половина красной:

Thumb
Половина поверхности Морина соответствует внешней поверхности сферы (зелёной),
которой она гомеоморфна, а другая симметричная половина соответствует внутренней поверхности сферы (красной).

Тогда вращение поверхности на 90° вокруг её оси симметрии сменит её цвета, то есть сменит полярность (внутри-снаружи) ориентируемой поверхности, так что повторение шагов гомотопии в точности с той же позиции в обратном порядке к исходной сфере после поворота поверхности Морина приведёт к сфере, внешняя сторона которой красная, а внутренняя сторона зелёная, то есть к вывернутой сфере. Ниже приведены шаги выворачивания:

1. сфера: зелёная снаружи, красная внутри...
2. преобразуем в...
3. поверхность Морина,
3'. поверхность Морина поворачиваем на 90°...
2'. обратное преобразование в...
1'. сферу: красная снаружи, зелёная внутри.

Remove ads

Структура поверхности Морина

Суммиров вкратце
Перспектива

Поверхность Морина может быть разделена на четыре конгруэнтные секции. Эти секции можно здесь называть Восточной, Южной, Западной и Северной, или, соответственно, секцией 0, секцией 1, секцией 2 и секцией 3.
Thumb

Восточная секция поверхности Морина.

Поверхность Морина имеет четвёрку точек, через которую проходит ось симметрии. Эта четвёрка точек является начальными и конечными точками шести линий узловых точек. Каждая из четырёх секций ограничена тремя из этих линий узловых точек, так что каждая их четырёх секций гомеоморфна треугольнику. Восточную секцию представим теперь схематично:
Thumb
Рисунок показывает восточную секцию, ограниченную тремя петлями ABCDA, AEFGA, и AHIJA. Третья петля, AHIJA является линией узловых точек, где Восточная секция пересекает себя. Петля ABCDA является линией узловых точек, по которой Восточная секция соединена с Западной секцией, а петля AEFGA является линией узловых точек, по которой Восточная секция соединена с Южной секцией. Точка здесь на самом деле перекрывает четыре различные точки: .

Вот как Восточная секция связана с другими секциями: пусть каждая из её ограничивающих петель определена упорядоченной четвёркой точек, тогда

,

где точки без штриха принадлежат секции 0 (Восточной), точки с одним штрихом принадлежат секции 1 (Южной), точки с двумя штрихами принадлежат секции 2 (Западной), а точки с тремя штрихами принадлежит секции 3 (Северной).

Оставшиеся три петли соединяют секции следующим образом:

Восточная секция имеет, рассматриваемая сама по себе, одну петлю узловых точек: AHIJA. Если поверхность развёрнута, плоский результат будет следующим:
Thumb
который гомеоморфен треугольнику:
Thumb

Соединение четырёх треугольных секций по их швам даёт тетраэдр:
Thumb
который гомеоморфен сфере, это показывает, что поверхность Морина является самопересекающейся сферой.

Remove ads

Галерея поверхностей Морина

Thumb

Четыре различных взгляда на поверхность Морина: первые два показаны с вырезанными «барьерами переходов», последние два представляют вид «снизу».

Аналитическая поверхность Морина

Поверхность Морина может быть элегантно описана набором уравнений[1] либо в открытой версии (с полюсами на бесконечности), либо замкнутой.

Галерея поверхностей Морина

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads