Лучшие вопросы
Таймлайн
Чат
Перспективы

Противоположная теорема

Из Википедии, свободной энциклопедии

Remove ads

Противоположная теорема — это утверждение, в котором условие и заключение исходной теоремы заменены их отрицаниями. Каждая теорема может быть выражена в форме импликации , в которой посылка является условием теоремы, а следствие является заключением теоремы. Тогда теорема, записанная в виде является противоположной к ней[1]. Здесь  — отрицание ,  — отрицание . Доказательство необходимости и достаточности условий теоремы для её заключения сводится к доказательству одной из двух противоположных теорем ( и ; и ) или одной из двух обратных теорем ( и ; и )[2].

Если условие и/или заключение теоремы являются сложными суждениями, то противоположная теорема допускает множество не равносильных друг другу формулировок. Например, если условием теоремы является , а заключением : , то для противоположной теоремы существует пять форм:[3]

Remove ads

Свойства

  • Прямая теорема эквивалентна теореме, противоположной обратной:
  • Обратная теорема эквивалентна противоположной прямой: [1]
Remove ads

Примеры

Если в треугольнике со сторонами длиной , и угол, противолежащий стороне , прямой, то .

Противоположная к теореме Пифагора теорема может быть сформулирована следующим образом:

Если в треугольнике со сторонами длиной , и угол, противолежащий стороне , не является прямым, то .

Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads