Лучшие вопросы
Таймлайн
Чат
Перспективы
Равномерная сходимость
Из Википедии, свободной энциклопедии
Remove ads
Пусть — произвольное множество, — метрическое пространство, — последовательность функций. Говорят, что последовательность равномерно сходится[1] к функции , если для любого существует такой номер , что для всех номеров и всех точек выполняется неравенство
Обычно обозначается .
Это условие равносильно тому, что
Remove ads
Свойства
- Если — линейное нормированное пространство и последовательности отображений и , равномерно сходятся на множестве , то последовательности и при любых также равномерно сходятся на .
- Для вещественнозначных функций (или, более общо, если — линейное нормированное кольцо), последовательность отображений , равномерно сходится на множестве и ограниченное отображение, то последовательность также равномерно сходится на .
- Если — топологическое пространство, — метрическое пространство и последовательность непрерывных в точке отображений равномерно сходится на множестве к отображению , то это отображение также непрерывно в точке .
- Если последовательность интегрируемых по Риману (по Лебегу) функций равномерно сходится на отрезке к функции , то эта функция также интегрируема по Риману (соответственно по Лебегу), и для любого имеет место равенство
и сходимость последовательности функций
на отрезке к функции
равномерна.
- Если последовательность непрерывно дифференцируемых на отрезке функций , сходится в некоторой точке , a последовательность их производных равномерно сходится на , то последовательность также равномерно сходится на , её предел является непрерывно дифференцируемой на этом отрезке функцией.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads