Лучшие вопросы
Таймлайн
Чат
Перспективы

Круг сходимости

Из Википедии, свободной энциклопедии

Remove ads

Круг сходимости[1] степенного ряда — это круг вида

, ,

в котором ряд абсолютно сходится, а вне его, при , расходится. Иными словами, круг сходимости степенного ряда есть внутренность множества точек сходимости ряда. Круг сходимости может вырождаться в множество, состоящее из одной точки , когда , и может совпадать со всей плоскостью переменного , когда .

Remove ads

Радиус сходимости

Радиус круга сходимости называется радиусом сходимости[1] ряда.

Радиус сходимости ряда Тейлора аналитической функции равен расстоянию от центра ряда до множества особых точек функции, и может быть вычислен по формуле Коши — Адамара:

Эта формула выводится на основе признака Коши.

Remove ads

Теорема Островского — Адамара

Суммиров вкратце
Перспектива

Для степенного ряда

,

у которого почти все коэффициенты равны нулю, в том смысле, что последовательность ненулевых коэффициентов удовлетворяет

для некоторого фиксированного , круг с центром и радиусом, равным радиусу сходимости, является естественной границей — аналитическое продолжение функции, определяемой таким рядом, невозможно за пределы круга.

Remove ads

Литература

См. также

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads