Лучшие вопросы
Таймлайн
Чат
Перспективы

Двойственное пространство

Из Википедии, свободной энциклопедии

Remove ads

Двойственное пространство (также дуальное пространство, иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.

Определение

Множество всех непрерывных линейных функционалов, определённых на топологическом векторном пространстве , также образует векторное пространство. Это пространство называется сопряжённым к , оно обычно обозначается . Множество всех линейных функционалов на , не обязательно непрерывных, называется алгебраически сопряжённым к , оно обычно обозначается [1].

В случае (рассматриваемом обычно в линейной алгебре), когда векторное пространство конечномерное, все линейные функционалы автоматически являются непрерывными, и сопряжённое пространство состоит просто из всех линейных функционалов (функций) на . В случае (рассматриваемом обычно в функциональном анализе), когда бесконечномерное, вообще говоря, [1].

В тензорном исчислении применяется обозначение для элементов (верхний, или контравариантный, индекс) и для элементов (нижний, или ковариантный, индекс).

Remove ads

Двойственные отображения

Суммиров вкратце
Перспектива

Двойственное отображениелинейное отображение между векторными пространствами, двойственными к данным, индуцированное отображением между самими пространствами.

Пусть  — векторные пространства, а  — двойственные векторные пространства. Для любого линейного отображения двойственное отображение (в обратном порядке) определяется как

для любого .

Remove ads

Свойства

Конечномерные пространства[2]

  • Сопряжённое пространство имеет ту же размерность, что и пространство над полем . Следовательно, пространства и изоморфны.
  • Каждому базису пространства можно поставить в соответствие так называемый двойственный (или взаимный) базис пространства , где функционал  — проектор на вектор :
  • Если пространство евклидово, то есть на нём определено скалярное произведение, то между и существует так называемый канонический изоморфизм (то есть изоморфизм, не зависящий от выбранных базисов), определённый соотношением
  • Второе сопряжённое пространство изоморфно . Более того, существует канонический изоморфизм между и (при этом не предполагается, что пространство евклидово), определённый соотношением
  • Определенный выше канонический изоморфизм показывает, что пространства и играют симметричную роль: каждое из них является сопряженным к другому. Для того, чтобы выделить эту симметрию, для часто пишут подобно записи скалярного произведения.

Бесконечномерные пространства

  • Если векторное пространство нормированное, то сопряжённое пространство имеет естественную норму — это операторная норма непрерывных функционалов. Пространство  — банахово[3][1].
  • Если пространство гильбертово, то по теореме Рисса существует изоморфизм между и , причём, аналогично конечномерному случаю, каждый линейный ограниченный функционал может быть представлен через скалярное произведение с помощью некоторого элемента пространства [4].
  • Сопряжённым к пространству , , является пространство , где . Аналогично, сопряжённым к , , является с тем же соотношением между p и q.
Remove ads

Вариации и обобщения

  • Термин сопряжённое пространство может иметь иное значение для векторных пространств над полем комплексных чисел: пространство , совпадающее с как вещественное векторное пространство, но с другой структурой умножения на комплексные числа:
  • При наличии в пространстве эрмитовой метрики (например, в гильбертовом пространстве) линейно-сопряжённое и комплексно-сопряжённое пространства совпадают.
Remove ads

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads