Лучшие вопросы
Таймлайн
Чат
Перспективы

Среднее геометрическое взвешенное

разновидность среднего значения Из Википедии, свободной энциклопедии

Remove ads

Среднее геометрическое взвешенное — разновидность среднего значения, обобщение среднего геометрического. Для набора неотрицательных вещественных чисел с вещественными весами , такими что , определяется как[1]

.

Приведённые формулы имеют смысл для любых значений весов, кроме случаев, когда некоторые и соответствующие веса . Поэтому, как правило, полагают, что все числа . Также обычно рассматриваются неотрицательные веса.

Если веса нормированы к единице (то есть их сумма равна единице), то среднее геометрическое взвешенное принимает более простой вид:

.
Remove ads

Свойства

Remove ads

Пример использования

Пусть дано дискретное распределение вероятностей . Обозначим через среднее геометрическое взвешенное от величин с весами , т.е.

.

Тогда энтропию Шеннона распределения можно записать в виде

.

Величина интерпретируется как эффективное количество состояний системы.

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads