Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Кантора — Бернштейна

Из Википедии, свободной энциклопедии

Теорема Кантора — Бернштейна
Remove ads

Теоре́ма Ка́нтора — Бернште́йна (в англ. литературе теоре́ма Ка́нтора — Бернште́йна — Шрёдера), утверждает, что если существуют инъективные отображения и между множествами и , то существует взаимооднозначное отображение . Другими словами, что мощности множеств и совпадают:

Thumb
Стрелки показывают отображения.

Другими словами, теорема утверждает следующее:

Из и следует, что где  — кардинальные числа.

Remove ads

История

Теорема названа в честь Георга Кантора, Феликса Бернштейна и Эрнста Шрёдера.

Первоначальное доказательство использовало аксиому выбора, однако эта аксиома необязательна для доказательства данной теоремы.

Эрнст Шрёдер первым сформулировал теорему, но опубликовал неправильное доказательство. Независимо эта теорема была сформулирована Кантором. Ученик Кантора Феликс Бернштейн опубликовал диссертацию, содержащую полностью корректное доказательство.

Remove ads

Доказательство

Суммиров вкратце
Перспектива

Пусть

и

при

и

Тогда для любого положим

Если не лежит в , тогда должен быть в (образе множества под действием отображения ). И тогда существует , и отображение.

Осталось проверить, что  — биекция.

Проверим, что h — сюръекция.

Нужно доказать, что

Если , то . Тогда


Пусть . Предположим, . Тогда , при , значит ,
, так как  — инъекция, то , что противоречит предположению.
Значит . Тогда

Проверим, что h — инъекция.

Нужно доказать, что


( — инъекция)






. Значит, этот случай невозможен.

Замечание

Определение отображения выше неконструктивно, то есть не существует алгоритма определения за конечное число шагов, лежит ли некоторый элемент множества в множестве или нет. Хотя для некоторых частных случаев такой алгоритм существует.

Remove ads

См. также

Литература

  • Ершов Ю. Л., Палютин Е. А. Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб.: «Лань», 2004. — 336 с.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads