Лучшие вопросы
Таймлайн
Чат
Перспективы
Условия Каруша — Куна — Таккера
необходимые условия решения задачи нелинейного программирования Из Википедии, свободной энциклопедии
Remove ads
В теории оптимизации условия Каруша — Куна — Таккера (англ. Karush — Kuhn — Tucker conditions, KKT) — необходимые условия решения задачи нелинейного программирования. Чтобы решение было оптимальным, должны быть выполнены некоторые условия регулярности. Метод является обобщением метода множителей Лагранжа. В отличие от него, ограничения, накладываемые на переменные, представляют собой не уравнения, а неравенства.
Remove ads
История
Кун и Таккер обобщили метод множителей Лагранжа (для использования при построении критериев оптимальности для задач с ограничениями в виде равенств) на случай общей задачи нелинейного программирования с ограничениями, как в виде равенств, так и в виде неравенств[1].
Необходимые условия локального минимума для задач с ограничениями исследуются давно. Одним из основных остаётся предложенный Лагранжем перенос ограничений в целевую функцию. Условия Куна-Таккера тоже выведены из этого принципа[2].
Remove ads
Постановка задачи
Суммиров вкратце
Перспектива
В задаче нелинейной оптимизации требуется найти значение многомерной переменной , минимизирующее целевую функцию:
при условиях, когда на переменную наложены ограничения типа неравенств:
- ,
а компоненты вектора неотрицательны[3].
Вильям Каруш в своей дипломной работе нашёл необходимые условия в общем случае, когда накладываемые условия могут содержать и уравнения, и неравенства. Независимо от него к тем же выводам пришли Гарольд Кун и Альберт Таккер.
Remove ads
Необходимые условия минимума функции
Если при наложенных ограничениях — решение задачи, то найдётся вектор множителей Лагранжа такой, что для функции Лагранжа выполняются условия:
- стационарности: ;
- дополняющей нежёсткости: ;
- неотрицательности: .
Remove ads
Достаточные условия минимума функции
Перечисленные необходимые условия минимума функции в общем случае не являются достаточными. При условии, что функции и выпуклы существует несколько вариантов дополнительных условий, которые делают условия из теоремы Каруша — Куна — Таккера достаточными:
Простая формулировка
Если для допустимой точки выполняются условия стационарности, дополняющей нежёсткости и неотрицательности, а также , то .
Более слабые условия
Если для допустимой точки выполняются условия стационарности, дополняющей нежёсткости и неотрицательности, а также (условие Слейтера), то .
Remove ads
Примечания
См. также
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads