Лучшие вопросы
Таймлайн
Чат
Перспективы

Условия Каруша — Куна — Таккера

необходимые условия решения задачи нелинейного программирования Из Википедии, свободной энциклопедии

Remove ads

В теории оптимизации условия Каруша — Куна — Таккера (англ. Karush — Kuhn — Tucker conditions, KKT) — необходимые условия решения задачи нелинейного программирования. Чтобы решение было оптимальным, должны быть выполнены некоторые условия регулярности. Метод является обобщением метода множителей Лагранжа. В отличие от него, ограничения, накладываемые на переменные, представляют собой не уравнения, а неравенства.

Remove ads

История

Кун и Таккер обобщили метод множителей Лагранжа (для использования при построении критериев оптимальности для задач с ограничениями в виде равенств) на случай общей задачи нелинейного программирования с ограничениями, как в виде равенств, так и в виде неравенств[1].

Необходимые условия локального минимума для задач с ограничениями исследуются давно. Одним из основных остаётся предложенный Лагранжем перенос ограничений в целевую функцию. Условия Куна-Таккера тоже выведены из этого принципа[2].

Remove ads

Постановка задачи

Суммиров вкратце
Перспектива

В задаче нелинейной оптимизации требуется найти значение многомерной переменной , минимизирующее целевую функцию:

при условиях, когда на переменную наложены ограничения типа неравенств:

,

а компоненты вектора неотрицательны[3].

Вильям Каруш в своей дипломной работе нашёл необходимые условия в общем случае, когда накладываемые условия могут содержать и уравнения, и неравенства. Независимо от него к тем же выводам пришли Гарольд Кун и Альберт Таккер.

Remove ads

Необходимые условия минимума функции

Если при наложенных ограничениях — решение задачи, то найдётся вектор множителей Лагранжа такой, что для функции Лагранжа выполняются условия:

  • стационарности: ;
  • дополняющей нежёсткости: ;
  • неотрицательности: .
Remove ads

Достаточные условия минимума функции

Перечисленные необходимые условия минимума функции в общем случае не являются достаточными. При условии, что функции и выпуклы существует несколько вариантов дополнительных условий, которые делают условия из теоремы Каруша — Куна — Таккера достаточными:

Простая формулировка

Если для допустимой точки выполняются условия стационарности, дополняющей нежёсткости и неотрицательности, а также , то .

Более слабые условия

Если для допустимой точки выполняются условия стационарности, дополняющей нежёсткости и неотрицательности, а также (условие Слейтера), то .

Remove ads

Примечания

См. также

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads