Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Линделёфа о многограннике

Из Википедии, свободной энциклопедии

Remove ads

Теорема Линделёфа о многограннике наименьшей площади при заданном объёме — теорема, доказанная Лоренсом Линделёфом в 1869 году [1].

Формулировка

Среди всех выпуклых многогранников трёхмерного евклидова пространства с данными направлениями граней и с данным объёмом наименьшую площадь поверхности имеет многогранник, описанный вокруг шара[2].

Замечания

Вариации и обобщения

  • Теорема справедлива в евклидовом пространстве любой размерности большей или равной 2 и может быть выведена из неравенства Брунна — Минковского [3].
  • На евклидовой плоскости аналогом теоремы Линделёфа о многограннике наименьшей площади при заданном объёме является следующая теорема Люилье:
    • Из всех выпуклых многоугольников, стороны которых имеют данное направление и периметр которых имеет заданную длину, наибольшую площадь имеет многоугольник, описанный вокруг окружности[4].

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads