Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Пикара (дифференциальные уравнения)
Из Википедии, свободной энциклопедии
Remove ads
Теорема Пикара (теорема Пикара — Линделёфа, теорема Коши — Липшица) — основная теорема обыкновенных дифференциальных уравнений; приводит достаточные условия для существования и единственности решения обыкновенного дифференциального уравнения первого порядка.
Формулировка
Пусть — обыкновенное дифференциальное уравнение, где , — векторное поле зависящее от параметра . Если отображение непрерывно и для любого фиксированного , и отображение — липшицево, то для любого существует такое, что на промежутке существует решение уравнения с начальными данными .
Замечания
- Верна также локальная версия теоремы.
Remove ads
О доказательстве
Обычно в доказательстве применяется теорема Банаха о неподвижной точке к интегральной формы уравнения:
Remove ads
Вариации и обобщения
Ссылки
- Арнольд В. И. Обыкновенные дифференциальные уравнения. М.:МЦНМО, 2018—344 с.
- Lindelöf, E. (1894). Sur l'application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre. Comptes rendus hebdomadaires des séances de l'Académie des sciences. 118: 454–7. (В этой публикации Э. Линделёф обсуждает обобщение подхода, предложенного ранее Э. Пикаром.)
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads