Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Рамсея
Из Википедии, свободной энциклопедии
Remove ads
Теорема Рамсея — теорема комбинаторики о разбиениях множеств, сформулированная и доказанная английским математиком Фрэнком Рамсеем в 1930 году[1]. Встречается в литературе в разных формулировках. Эта теорема положила начало теории Рамсея.
Формулировки
Теоретико-множественная формулировка
Частный случай N(p, q, r)
Пусть , и — натуральные числа, причём .
Тогда существует число , обладающее следующим свойством: если все -элементные подмножества -элементного множества произвольным образом разбиты на два непересекающихся семейства и , то либо существует -элементное подмножество множества , все -элементные подмножества которого содержатся в , либо существует -элементное подмножество, все -элементные подмножества которого содержатся в .
Общий случай
Пусть множество имеет элементов. Рассмотрим его -подмножества , обозначим совокупность всех этих подмножеств , упорядоченные -разбиения , числа , задающие разбиение .
Тогда для любого упорядоченного -разбиения множества существует такое минимальное число , что если , то существует — подмножество множества , то есть такое -подмножество множества , все -подмножества которого содержатся в [2].
Формулировка на языке теории графов
Для любых натуральных чисел в любой -цветной раскраске рёбер достаточно большого полного графа содержится полный подграф с вершинами для некоторого цвета . В частности, для любых и , достаточно большой полный граф двухцветной (чёрно-белой) раскраски, содержит либо полный чёрный подграф из вершин, либо полный белый подграф из вершин.
Remove ads
Числа Рамсея

Минимальное число , при котором это[что?] выполнено, называют числом Рамсея.
Например, равенство означает, что с одной стороны в любой двухцветной раскраске полного графа найдётся одноцветный треугольник, а с другой стороны — то, что полный граф допускает двухцветную раскраску без одноцветных треугольников.
В общем случае для -цветной раскраски используется обозначение для минимального числа вершин, обеспечивающего существование для некоторого цвета .
Remove ads
Доказательство теоремы Рамсея
Двухцветный случай
Лемма 1.
Доказательство. Докажем с помощью метода математической индукции по .
База индукции. , так как 1-вершинный граф можно считать полным графом любого цвета.
Индукционный переход. Пусть и . Рассмотрим полный чёрно-белый граф из вершин. Возьмём произвольную вершину и обозначим через и множества инцидентные в чёрном и белом подграфе соответственно. Так как в графе вершин, согласно принципу Дирихле (комбинаторика), либо , либо .
Пусть . Тогда либо в (и следовательно во всём графе) есть белый , что завершает доказательство, либо в есть чёрный , который вместе с образует чёрный . Случай рассматривается аналогично.
Замечание. Если и оба чётны, неравенство можно усилить: .
Доказательство. Предположим, и оба чётны. Положим и рассмотрим чёрно-белый граф из вершин. Если степень -й вершины в чёрном подграфе, то, согласно лемме о рукопожатиях, — чётно. Поскольку нечётно, должно существовать чётное . Для определённости положим, что чётно. Обозначим через и вершины инцидентные вершине 1 в чёрном и белом подграфах соответственно. Тогда и оба чётны. Согласно принципу Дирихле (комбинаторика), либо , либо . Так как чётно, а нечётно, первое неравенство можно усилить, так что либо , либо .
Предположим . Тогда либо подграф, порождённый множеством , содержит белый и доказательство завершено, либо он содержит чёрный , который вместе с вершиной 1 образует чёрный . Случай рассматривается аналогично.
Случай большего количества цветов.
Лемма 2. Если , то
Доказательство. Рассмотрим граф из вершин и окрасим его рёбра цветами. Будем временно считать цвета и одним цветом. Тогда граф становится -цветным. Согласно определению числа , такой граф либо содержит для некоторого цвета , такого что либо , окрашенный общим цветом и . В первом случае доказательство завершено. Во втором случае вернём прежние цвета и заметим, что, по определению числа Рамсея, полный — вершинный граф содержит либо цвета , либо цвета , так что утверждение полностью доказано.
Из леммы 1 следует конечность чисел Рамсея для . Отсюда, на основании леммы 2, следует конечность для любого . Это доказывает теорему Рамсея.
Remove ads
Значения чисел Рамсея
Суммиров вкратце
Перспектива
Таблица значений
Для при имеется очень мало данных[3]. Следующая таблица значений чисел Рамсея для взята из таблицы Радзишевского[англ.][4], данные приведены по состоянию на 2020 год.
Прим: Значения диагональных чисел Рамсея выделены жирным.
Асимптотические оценки
Из неравенства вытекает, что
В частности отсюда вытекает верхняя граница полученная Эрдёшем и Секерешем в 1935 году:
Нижняя граница получена Эрдёшем в 1947 году с помощью его вероятностного метода:
Эрдёш полагал, что в случае крайней необходимости человечество ещё способно найти , но не .
Известна также найденная Кимом в 1995 году оценка . В сочетании с оценкой это неравенство задаёт порядок роста величины .
В 2023 году Кампос, Гриффитс, Моррис и Сахасрабух улучшили верхнюю границу[5]:
Remove ads
Вариации и обобщения
- Теорема Эрдёша — Радо — обобщение теоремы Рамсея на несчётные множества.
- Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок.
Примечания
Ссылки
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads