Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Трахтенброта

Из Википедии, свободной энциклопедии

Remove ads

Теорема Трахтенброта — теорема о неразрешимости истинности формул логики первого порядка для конечных моделей. Была сформулирована Б. А. Трахтенбротом в 1950 году[1]. Её следствием является существование неограниченного числа формул, выражающих условие (а, следовательно, и определение) конечности множества и среди них имеется неограниченное множество независимых.[2] Также её следствием является отсутствие самой слабой аксиомы бесконечности (для любой аксиомы бесконечности найдется более слабая аксиома бесконечности)[3].

Remove ads

Пояснения

Существует ряд логических формул, выражающих условие конечности множества и, следовательно, являющимися его определениями, например:

  • множество конечно, если оно индуктивно;
  • множество конечно, если множество всех его подмножеств нерефлексивно[4];
  • множество конечно, если оно нерефлексивно;
  • множество конечно, если оно не является объединением двух непересекающихся множеств, каждое из которых эквивалентно данному множеству[4].

Следствием теоремы Трахтеброта является существование неограниченного числа таких формул и отсутствие среди них самой слабой и самой сильной[2].

В математической логике формула считается сильнее формулы , если следует из , но не следует из .

Другим следствием теоремы Трахтенброта является отсутствие самой слабой аксиомы бесконечности[3].

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads