Лучшие вопросы
Таймлайн
Чат
Перспективы

Число Лефшеца

характеристика отображения топологического пространства в себя Из Википедии, свободной энциклопедии

Remove ads

Число Лефшеца — определённая целочисленная характеристика отображения топологического пространства в себя.

Краткие факты Число Лефшеца, Названо в честь ...

Определение

Пусть  — топологическое пространство,  — непрерывное отображение,  — группы гомологий с коэффициентами в поле . Пусть  — след линейного преобразования

По определению, число Лефшеца отображения есть

Remove ads

Свойства

  • Число Лефшеца определено если общий ранг групп конечен, и в этом случае не зависит от выбора .

Формула Лефшеца

Пусть  — связное ориентируемое -мерное компактное топологическое многообразие или -мерный конечный клеточный комплекс,  — непрерывное отображение.

Предположим, что все неподвижные точки отображения изолированы.

Для каждой неподвижной точки , обозначим через её индекс Кронекера (локальная степень отображения в окрестности точки ). Тогда формула Лефшеца для и имеет вид

  • В частности, если отображение конечного клеточного комплекса не имеет неподвижных точек, то его число Лефшеца равно нулю.
Remove ads

История

Эта формула была установлена впервые Лефшецем для конечномерных ориентируемых топологических многообразий и позже для конечных клеточных комплексов. Этим работам Лефшеца предшествовала работа Брауэра 1911 о неподвижной точке непрерывного отображения -мерной сферы в себя.

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads