Лучшие вопросы
Таймлайн
Чат
Перспективы

Тест Соловея — Штрассена

Из Википедии, свободной энциклопедии

Remove ads

Тест Соловея — Штрассена — вероятностный тест простоты, открытый в 1970-х годах Робертом Мартином Соловеем совместно с Фолькером Штрассеном.[1] Тест всегда корректно определяет, что простое число является простым, но для составных чисел с некоторой вероятностью он может дать неверный ответ. Основное преимущество теста заключается в том, что он, в отличие от теста Ферма, распознает числа Кармайкла как составные.

Remove ads

История

Суммиров вкратце
Перспектива

В 17 веке Ферма доказал утверждение, названное позже малой теоремой Ферма, служащее основой теста Ферма на простоту:

Если n — простое и a не делится на n, то .

Эта проверка для заданного n не требует больших вычислений, однако утверждение, обратное этому, неверно. Так, существуют числа Кармайкла, являющиеся составными, для которых утверждение, приведенное в малой теореме Ферма, выполняется для всех целых чисел взаимнопростых с заданным числом. В 1994 году было показано, что таких чисел бесконечно много.[2] В связи с обнаруженным недостатком теста Ферма, актуальность приобрела задача увеличения достоверности вероятностных тестов. Первым тест, отсеивающий числа Кармайкла как составные, предложил Леманн. Этот недостаток отсутствует также в тестах Соловея — Штрассена и Миллера — Рабина за счет более сильного критерия отсева, чем малая теорема Ферма. Независимо от друг друга Д. Лемер в 1976 году и Р. Соловей совместно с Ф. Штрассеном в 1977 году доказали, что аналога чисел Кармайкла, которые являются составными и одновременно эйлеровыми псевдопростыми, нет.[3] На основе этого и был предложен тест Соловея — Штрассена на простоту, он был опубликован в 1977 году, дополнения к нему в 1978 году.

Remove ads

Обоснование

Суммиров вкратце
Перспектива

Тест Соловея — Штрассена опирается на малую теорему Ферма и свойства символа Якоби [4]:

  • Если n — нечетное составное число, то количество целых чисел a, взаимнопростых с n и меньших n, удовлетворяющих сравнению , не превосходит .

Составные числа n удовлетворяющие этому сравнению называются псевдопростыми Эйлера-Якоби по основанию a.

Remove ads

Алгоритм Соловея — Штрассена

Суммиров вкратце
Перспектива

Алгоритм Соловея — Штрассена [6] параметризуется количеством раундов k. В каждом раунде случайным образом выбирается число a < n. Если НОД(a,n) > 1, то выносится решение, что n составное. Иначе проверяется справедливость сравнения . Если оно не выполняется, то выносится решение, что n — составное. Если это сравнение выполняется, то a является свидетелем простоты числа n. Далее выбирается другое случайное a и процедура повторяется. После нахождения k свидетелей простоты в k раундах выносится заключение, что n является простым числом с вероятностью .

На псевдокоде алгоритм может быть записан следующим образом:

 Вход:  > 2, тестируемое нечётное натуральное число;
      , параметр, определяющий точность теста.
Выход: составное, означает, что  точно составное;
       вероятно простое, означает, что  вероятно является простым.

for i = 1, 2, ..., :
    = случайное целое от 2 до , включительно;
   если НОД(a, n) > 1, тогда:
       вывести, что  — составное, и остановиться.
   если , тогда: 
       вывести, что составное, и остановиться.

иначе вывести, что  простое  с вероятностью , и остановиться.
Remove ads

Пример применения алгоритма

Суммиров вкратце
Перспектива

Проверим число n = 19 на простоту. Выберем параметр точности k = 2.

 k = 1
 Выберем случайное число a = 11;  2 < a < n - 1
 Проверим условие НОД(a,n)>1
 НОД(11,19)=1; значит проверяем выполнение сравнения    
 
 
 Получили, что  поэтому переходим к следующей итерации
 k = 2
 Выберем случайное число a = 5;    2 < a < n - 1
 Проверим условие НОД(a,n)>1
 НОД(5,19)=1;  значит проверяем выполнение сравнения    
 
 
   и это была последняя итерация, отсюда делаем вывод, что 19 - простое число с вероятностью 
Remove ads

Вычислительная сложность и точность

  • Точность по сравнению с другими вероятностными тестами на простоту (здесь k — число независимых раундов)
Подробнее , ...
  • Теоретическая сложность вычислений всех приведенных в таблице тестов оценивается как .[3]
  • Алгоритм требует операций над длинными целыми числами.[1]
  • При реализации алгоритма, для снижения вычислительной сложности, числа a выбираются из интервала 0 < a < c < n, где c — константа равная максимально возможному значению натурального числа, помещающегося в одном регистре процессора.[6]
Remove ads

Применение

Вероятностные тесты применяются в системах основанных на проблеме факторизации, например RSA или схема Рабина. Однако на практике степень достоверности теста Соловея — Штрассена не является достаточной, вместо него используется тест Миллера — Рабина. Более того, используются объединенные алгоритмы, например пробное деление и тест Миллера — Рабина, при правильном выборе параметров можно получить результаты лучше, чем при применении каждого теста по отдельности.[7]

Remove ads

Улучшение теста

В 2005 году на Международной конференции Bit+ «Informational Technologies −2005» А. А. Балабанов, А. Ф. Агафонов, В. А. Рыку предложили модернизированный тест Соловея — Штрассена. Тест Соловея — Штрассена основан на вычислении символа Якоби, что занимает время эквивалентное . Идея улучшения состоит в том, чтобы в соответствии с теоремой квадратичной взаимности Гаусса, перейти к вычислению величины ,являющейся обратной символу Якоби, что является более простой процедурой.[8].

Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads