Лучшие вопросы
Таймлайн
Чат
Перспективы

Точка Аполлония

точка пересечения прямых, соединяющих вершины треугольника с точками касания вневписанных окружностей с описанной вокруг них Из Википедии, свободной энциклопедии

Remove ads

Точка Аполлония  — специальная точка в треугольнике. Определяется как точка пересечения прямых, соединяющих вершины треугольника с точками касания 3 вневписанных окружностей треугольника с описанной вокруг них окружностью. Связана с задачей Аполлония. В Энциклопедии центров треугольника именуется как центр треугольника под именем X(181).

Remove ads

Пример применения точки Аполлония к решению задачи Аполлония

Задача Аполлония — построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. Один из вариантов этой задачи, когда третья окружность касается трёх внутренних внешним образом, решается с помощью введения точки Аполлония [1][2].

  • Точка Аполлония в Энциклопедии центров треугольника именуется как центр треугольника под именем X(181).
  • В рамках этой задачи окружностью Аполлония (не путать с окружностями Аполлония) называется окружность, которая касается трех вневписанных окружностей вне треугольника внутренним образом (см. зелёную окружность на рисунке).
Remove ads

Окружность Аполлония

Определение окружности Аполлония

Thumb
Точка Аполлония и окружность Аполлония
  • Дан треугольник Пусть вневписанные окружности треугольника противоположные вершинам и есть соответственно (см. рисунок). Тогда окружность Аполлония (на рис. справа показана зелёным цветом) касается внутренним образом сразу трех вневписанных окружностей треугольника в точках соответственно и (см. рисунок)[3].
  • Решением упомянутой выше частной задачи Аполлония является указанная окружность касающаяся трех данных окружностей и внешним образом.

Радиус окружности Аполлония

Радиус окружности Аполлония равен где  — радиус вписанной окружности и  — полупериметр треугольника[4].

Определение точки Аполлония

Пусть и есть точки касания окружности Аполлония с соответствующими вневписанными окружностями. Тогда прямые и пересекаются в одной точке которую называют точкой Аполлония треугольника

  • Ее трилинейные координаты:
Remove ads

Замечание

На рисунке указанная точка Аполлония изображена, как точка пересечения трех перпендикуляров к сторонам треугольника опущенных из точек касаний и с соответствующими вневписанными окружностями треугольника образованного совместными попарными касательными линиями трех упомянутых выше окружностей и Хотя эта точка лежит в точке пересечения трех отрезков и но они не перпендикулярны сторонам треугольника. Действительно, её проекции на стороны треугольника являются вершинами равностороннего треугольника, а перпендикуляры к сторонам треугольника пересекаются в его ортоцентре. Проекции ортоцентра на стороны треугольника не являются вершинами равностороннего треугольника. Ортоцентр и точка Аполлония совпадают только у равностороннего треугольника. У других треугольников они не совпадают.

Remove ads

Свойство

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads