Лучшие вопросы
Таймлайн
Чат
Перспективы
Уравнение Ван-дер-Ваальса
Из Википедии, свободной энциклопедии
Remove ads
Уравне́ние Ван-дер-Ва́альса (или уравне́ние Ван дер Ва́альса[К 1]) — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.
Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры, но и объёма.
Уравнение Ван-дер-Ваальса — это одно из широко известных приближённых уравнений состояния, описывающее свойства реального газа, имеющее компактную форму и учитывающее основные характеристики газа с межмолекулярным взаимодействием[7].
Remove ads
Уравнение состояния
Суммиров вкратце
Перспектива

P — давление;
V — объём;
K — критическая точка;
abKcd — бинодаль (граница области двухфазного равновесия; область под колоколом бинодали — область двухфазного равновесия жидкость — пар);
eKf — спинодаль (граница между областями метастабильных и термодинамически неустойчивых состояний; область под колоколом спинодали — нереализуемые состояния);
bc — коннода (линия конденсации);
abKe — область перегретой жидкости;
dcKf — область переохлаждённого пара;
площади закрашенных фигур под изобарой bc и над ней равны (правило Максвелла, 1875)
Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.
Для одного моля газа Ван-дер-Ваальса оно имеет вид:
где
- — давление,
- — молярный объём,
- — абсолютная температура,
- — универсальная газовая постоянная.
Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка учитывает силы притяжения между молекулами (давление на стенку уменьшается, так как есть силы, втягивающие молекулы приграничного слоя внутрь), поправка — суммарный объём молекул газа.
Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так:
где
- — объём.
Из рисунка, на котором изображены изотермы газа Ван-дер-Ваальса, видно, что ниже некоторой температуры зависимость перестаёт быть монотонной: образуется петля Ван-дер-Ваальса, в которой увеличению давления соответствует увеличение объёма, что противоречит законам термодинамики. Появление петли означает, что уравнение Ван-дер-Ваальса в данной области изменения и перестаёт описывать действительную ситуацию, когда имеет место фазовый переход газ — жидкость и реальная изотерма представляет собой отрезок прямой — конноду (ноду), соединяющую две фигуративные точки на бинодали.
Remove ads
Вывод уравнения
Суммиров вкратце
Перспектива
Наиболее известны два способа получения уравнения: традиционный вывод самого Ван-дер-Ваальса и вывод методами статистической физики.
Традиционный вывод
Рассмотрим сначала газ, в котором частицы не взаимодействуют друг с другом, такой газ удовлетворяет уравнению состояния идеального газа:
Далее предположим, что частицы данного газа являются упругими сферами одинакового радиуса . Так как газ находится в сосуде конечного объёма, то пространство, где могут перемещаться частицы, будет несколько меньше. В исходной формуле следует вычесть из всего объёма некую его часть , которая, вообще говоря, зависит только от вещества, из которого состоит газ. Таким образом, получается следующее уравнение:
Вычитаемый объём не будет в точности равен суммарному объёму всех частиц. Если частицы считать твёрдыми и абсолютно упругими шариками, то вычитаемый объём будет примерно в четыре раза больше. Это легко объясняется тем, что центры упругих шаров не могут приближаться на расстояние ближе .
Далее Ван-дер-Ваальс рассматривает силы притяжения между частицами газа и делает следующие допущения:
- Частицы распределены равномерно по всему объёму.
- Силы притяжения стенок сосуда не учитываются, что в общем случае неверно.
- Частицы, находящиеся внутри сосуда и непосредственно у стенок, ощущают притяжение по-разному: внутри сосуда действующие силы притяжения других частиц компенсируют друг друга.
Таким образом, для частиц внутри сосуда силы притяжения не учитываются. Частицы, находящиеся непосредственно у края сосуда, затягиваются внутрь силой, пропорциональной концентрации:
- .
Число частиц, которые находятся непосредственно у стенок, в свою очередь тоже предполагается пропорциональным концентрации . Можно считать, что давление на стенки сосуда меньше на некоторую величину, обратно пропорциональную квадрату объёма:
Окончательное уравнение:
Remove ads
Внутренняя энергия газа Ван-дер-Ваальса
Суммиров вкратце
Перспектива
Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы при разведении молекул на бесконечность:
Внутренняя энергия газа Ван-дер-Ваальса складывается из кинетической энергии хаотического (теплового) движения молекул относительно центра масс газа и только что нами посчитанной потенциальной энергии межмолекулярного взаимодействия. Так, для молей газа:
где — молярная теплоёмкость при постоянном объёме, которая предполагается не зависящей от температуры.
Remove ads
Адиабата
Уравнение адиабаты для газа Ван-дер-Ваальса:
где
Remove ads
Критические параметры
Суммиров вкратце
Перспектива
Критическими параметрами газа называются значения его макропараметров (давления, объёма и температуры) в критической точке, то есть в таком состоянии, когда жидкая и газообразная фазы вещества неразличимы. Найдём эти параметры для газа Ван-дер-Ваальса, для чего преобразуем уравнение состояния:
Мы получили кубическое уравнение относительно
В критической точке все три корня уравнения сливаются в один, поэтому предыдущее уравнение эквивалентно следующему:
Приравняв коэффициенты при соответствующих степенях , получим равенства:
Из них вычислим значения критических параметров
и критического коэффициента:
Remove ads
Приведённые параметры
Суммиров вкратце
Перспектива
Приведённые параметры определяются как отношения
Если подставить в уравнение Ван-дер-Ваальса получится приведённое уравнение состояния (для моль).
Если вещества обладают двумя одинаковыми приведёнными параметрами из трёх, то и третьи приведённые параметры у них совпадают.
Remove ads
Недостатки уравнения Ван-дер-Ваальса
Уравнение Ван-дер-Ваальса более точно описывает поведение реальных газов, чем уравнение состояния идеального газа, но вместе с тем не является абсолютно адекватной моделью. Его недостатки [8]:
- 1. Для реальных веществ
- 2. Для реальных веществ (скорее, ).
- 3. Уравнение Ван-дер-Ваальса расходится с экспериментом в области двухфазных состояний.
Remove ads
Константы Ван-дер-Ваальса для некоторых газов
Remove ads
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads