Лучшие вопросы
Таймлайн
Чат
Перспективы

Уравнение Мещерского

диф. уравнение для движения тел с переменной массой Из Википедии, свободной энциклопедии

Remove ads

Уравне́ние Меще́рского — основное уравнение в механике тел переменной массы, полученное И. В. Мещерским в 1897 году[1] для материальной точки переменной массы (состава).

Уравнение обычно записывается в следующем виде:

где:

  •  — масса материальной точки, изменяющаяся за счет обмена частицами с окружающей средой, в произвольный момент времени t;
  •  — скорость движения материальной точки переменной массы;
  •  — результирующая внешних сил, действующих на материальную точку переменной массы со стороны её внешнего окружения (в том числе, если такое имеет место, и со стороны среды, с которой она обменивается частицами, например электромагнитные силы — в случае массообмена с магнитной средой, сопротивление среды движению и т. п.);
  •  — относительная скорость присоединяющихся частиц;
  •  — относительная скорость отделяющихся частиц;
  • и  — скорость увеличения суммарной массы присоединившихся частиц и скорость увеличения суммарной массы отделившихся частиц соответственно.

Формула Циолковского может быть получена как результат решения этого уравнения. Величина:

называется «реактивной силой».

Обычно[2][3][4] уравнение Мещерского получают, основываясь на уравнении для скорости изменения импульса системы материальных точек, имеющем вид:

где  — импульс системы, равный сумме импульсов всех материальных точек, составляющих систему, а  — равнодействующая всех внешних сил, действующих на тела системы. Ниже приведён вывод уравнения, использующий именно такой подход.

Remove ads

Релятивистское уравнение Мещерского

Суммиров вкратце
Перспектива

Первыми работами[5], посвященными исследованию движения ракет с учетом релятивистских эффектов, были работы Аккерета[6] и Зенгера[7].

При выводе уравнения Мещерского, пригодного для случая скоростей, сравнимых со скоростью света, используется выражение для релятивистского импульса . В результате уравнение приобретает вид:

В этом уравнении в общем случае не вводятся относительные скорости и , так как в релятивистском случае сложение скоростей производится иначе.

Для случая только частиц, отделяющихся со скоростью коллинеарной скорости ракеты, это уравнение сводится к следующему виду:

где  — скорость частиц относительно ракеты.

Remove ads

История открытия

Уравнение движения материальной точки переменной массы для случая присоединения (или отделения) частиц было получено и основательно исследовано в магистерской диссертации И. В. Мещерского, защищенной в Петербургском Университете 10 декабря 1897 года[8]. Первое сообщение об уравнении движения материальной точки переменной массы в общем случае одновременного присоединения и отделения частиц было сделано И. В. Мещерским 24 августа 1898 года на заседании секции математики и астрономии X съезда русских естествоиспытателей и врачей в Киеве, широкую известность оно получило позднее, после работы «Уравнения движения точки переменной массы в общем случае», напечатанной в «Известиях Петербургского политехнического института» в 1904 году[9].

По исследованиям Г. К. Михайлова, изложенным в его докторской диссертации[10] и работе «Георг Бюкуа и начала динамики систем с переменными массами»[11], аналогичное уравнение было установлено чешским учёным-любителем Георгом Бюкуа (1781—1851) ещё в работах 1812—1814 гг.

Remove ads

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads