Лучшие вопросы
Таймлайн
Чат
Перспективы

Факторизация гауссовых чисел

Из Википедии, свободной энциклопедии

Remove ads

Факторизация гауссовых чисел — разложение целых гауссовых чисел на простые гауссовы множители.

Предварительные замечания

Суммиров вкратце
Перспектива

Особенность делимости в кольце гауссовых чисел отличающая её от делимости натуральных чисел: кольцо содержит четыре делителя единицы норма которых (квадрат комплексного модуля) равна 1. Два гауссовых числа называются ассоциированными, если одно получается из другого умножением на делитель единицы. Легко видеть, что ассоциированность — отношение эквивалентности[1]. Пример: гауссовы числа и ассоциированы, поскольку:

.

У каждого ненулевого гауссова числа есть три ассоциированных с ним, и делители у них у всех совпадают. Все делители чисел также определены с точностью до ассоциированности.

Для гауссовых чисел имеет место аналог основной теоремы арифметики: каждое гауссово число, не являющееся нулём или делителем единицы, разлагается на простые множители, причём это разложение однозначно с точностью до порядка и ассоциированности множителей[2].

Пример: . Множители этих двух, по виду разных, разложений попарно ассоциированы: так что однозначность не нарушается.

Remove ads

Алгоритм разложения гауссового числа на простые множители

Чтобы практически разложить гауссово число на простые множители, можно использовать следующее их свойство: все делители гауссова числа являются также делителями его нормы. При этом норма содержит также «лишние» простые множители, соответствующие сопряжённому к числу.

Таким образом, начать следует с разложения нормы числа на простые натуральные множители[3].

  1. Множитель 2, если он присутствует в разложении нормы, разлагается как . Следует включить в результирующее разложение те из этих множителей (в соответствующей степени), на которые делится нацело.
  2. Кроме числа 2, остальные множители нормы — нечётные. Множитель вида является простым гауссовым числом, поэтому он делит не только норму , но и само . Но тогда этот множитель делит и сопряжённое число . Отсюда вытекает, что множитель вида входит в разложение нормы всегда в чётной степени, а в разложение самого — в степени, вдвое меньшей.
  3. Множитель вида , согласно теореме Ферма — Эйлера, можно разложить на произведение сопряжённых простых гауссовых чисел (или, что то же самое, на сумму квадратов натуральных чисел). И здесь следует делением выяснить, какой из сомножителей относится к исходному числу, а какой — к сопряжённому.

Например, для разложения на простые множители (норма — 225) выделяются простые натуральные множители: . По предыдущему, . При этом делится только на и не делится на . Частное от деления на равно поэтому окончательный результат:

.
Remove ads

Таблица разложения гауссовых чисел с нормой до 1000

Суммиров вкратце
Перспектива

Соглашения

Данная таблица показывает для всех гауссовых чисел с нормой от 2 до 1000, является ли это число простым гауссовым. Если да, то такое число помечено в таблице кодом: простое, а если нет, то приводится его разложение на простые гауссовы множители. Отметим, что простое натуральное число не обязано быть простым гауссовым числом; например, числа 2 и 5 как гауссовы числа не являются простыми:

В первой колонке таблицы — норма гауссова числа (не всякое натуральное число может быть нормой гауссова числа). Во второй — числа, имеющие эту норму, с точностью до ассоциированности — из 4 чисел, ассоциированных с числом x: () в таблице представлено одно, у которого вещественная часть положительна, а мнимая — неотрицательна. Например, во второй строке таблицы разложение числа охватывает также разложения

Каждое разложение, показанное в строке таблицы, имеет ещё по крайней мере три варианта, получаемых заменой простых множителей на ассоциированные с ними. Пример:

Поэтому принято следующее соглашение: из 4 вариаций каждого простого множителя представлена та, что находится в правой полуплоскости комплексной плоскости, и у которой абсолютное значение вещественной части не меньше, чем абсолютное значение мнимой части.

Гауссовы числа упорядочены по возрастанию их нормы (последовательность A001481 в OEIS). Не всякое натуральное число может быть гауссовой нормой (см. A055025, A103431 и A103432).

Таблица факторизации

Подробнее Норма, Число ...
Подробнее Норма, Число ...
Подробнее Норма, Число ...
Подробнее Норма, Число ...
Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads