Лучшие вопросы
Таймлайн
Чат
Перспективы
Хейтсбери, Уильям
Из Википедии, свободной энциклопедии
Remove ads
Уи́льям Хе́йтсбери (англ. William Heytesbury, лат. Gugliemus Hentisberus; ок. 1313, Уилтшир, Англия — 1372[1], Оксфорд, Англия) — математик, механик, философ и логик, один из oксфордских калькуляторов из Мертон-колледжа, в котором Хейтсбери с 1330 года учился, а с 1338 года — работал. В 1334 году получил степень доктора теологии. Канцлер Оксфордского университета в 1371—1372 гг.
Главный труд Хейтсбери — «Правила для разрешения софизмов» (Regulae solvendi sophismata) — написан ок. 1335. Данное сочинение, состоявшее из ряда глав, было в основном посвящено рассмотрению ряда вопросов схоластической философии и логики.
Для математики и механики особый интерес представляют изложенные Хейтсбери основы разработанного учёными Мертон-колледжа учения о равномерном («униформном») движении, которое противопоставлялось движению неравномерному («дифформному»)[2].
Данное Хейтсбери определение равномерного движения таково[3]: «Из локальных движений то называется равномерным, в котором равные расстояния постоянно проходятся с равной скоростью в равные части времени»[4].
Применительно к неравномерному движению Хейтсбери выделяет его подкласс — равнопеременное движение («униформно-дифформное», по терминологии мертонцев). Он даёт вполне чёткое[2] определение равнопеременного движения, утверждая: «Всякое движение является равномерно ускоренным, если за любую равную часть времени оно приобретает равное приращение скорости»[5]; ключевым в этом определении является понятие «скорость» (velocitas)[6].
Именно Хейтсбери — впервые в истории кинематики — вводит в механику понятие мгновенной скорости[2][7]: «Скорость в любой данный момент времени будет определяться путём, который был бы описан… движущейся точкой, если бы в течение некоторого периода времени она двигалась бы равномерно с той степенью скорости, с которой она двигалась в этот момент, какой бы момент ни был указан»[8].
Для случая равнопеременного движения Хейтсбери сформулировал и доказал так называемую теорему о среднем градусе скорости[9]. Теорема утверждает, что путь, проходимый телом за некоторое время при равнопеременном движении, равен пути, проходимому телом за то же время при равномерном движении со скоростью, равной среднему арифметическому максимального и минимального значений скорости в равнопеременном движении[10]. В современных обозначениях[11]:
- ,
где — пройденный путь, — время движения, и — начальная и конечная скорости в равнопеременном движении.
Remove ads
Публикации
- 1335 — Regulae solvendi sophismata (Rules for Solving Sophisms)
- 1. On insoluble sentences
- 2. On knowing and doubting
- 3. On relative terms
- 4. On beginning and ceasing
- 5. On maxima and minima
- 6. On the three categories
- 1483 — De probationibus conclusionum tractatus regularum solvendi sophismata. — Pavia, 1483.
- De tribus praedicamentis
- De probationibus conclusionum tractatus regularum solvendi sophismata (On the Proofs of Conclusions from the Treatise of Rules for Resolving Syllogisms)
- Liber Calculationum
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads