Лучшие вопросы
Таймлайн
Чат
Перспективы
Число Шеннона
оценочное минимальное количество неповторяющихся шахматных партий Из Википедии, свободной энциклопедии
Remove ads
Число́ Ше́ннона — оценочное минимальное количество неповторяющихся шахматных партий, вычисленное в 1950 году американским математиком Клодом Шенноном. Составляет приблизительно 10120.
Вычисление числа Шеннона описано в работе «Программирование компьютера для игры в шахматы» (англ. «Programming a Computer for Playing Chess»), опубликованной в марте 1950 года в журнале Philosophical Magazine и ставшей одним из фундаментальных трудов в развитии компьютерных шахмат как дисциплины. В основу вычислений легло предположение о том, что каждая игра длится в среднем 40 ходов и на каждом ходе игрок делает выбор в среднем из 30 вариантов.[1] Для сравнения — количество атомов в наблюдаемой Вселенной составляет по разным оценкам от 1079 до 1081, то есть в 1040 раз меньше числа Шеннона.
Кроме этого, Шеннон высчитал и количество возможных позиций, равняющееся примерно:
Это число, однако, включает также ситуации, исключаемые правилами игры и поэтому недосягаемые в дереве возможных ходов. В настоящее время появился ряд работ, уточняющих[2] или даже опровергающих это число[3].
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads