Лучшие вопросы
Таймлайн
Чат
Перспективы

Число четверной точности

Из Википедии, свободной энциклопедии

Remove ads

Число́ четверно́й то́чности (англ. Quadruple precision) — компьютерный формат представления чисел с плавающей запятой, занимающий в памяти четыре последовательных ячейки (компьютерных слова; в случае 32-битного компьютера — 128 бит или 16 байт). Как правило, обозначает формат числа с плавающей запятой binary128 стандарта IEEE 754.

Формат числа четверной точности

Знак: 1 бит.
Порядок: 15 бит[1][2].
Мантисса: 112 бит (112[1][2] явно хранятся).

Эквивалентное количество значащих десятичных цифр (при одинаковой средней относительной погрешности представления): 34 (log10(2113) ≈ 34.016).

Подробнее Знак, (15 бит) Порядок ...
Remove ads

Примеры чисел четверной точности

Небольшие константы:[2]

0x 3fff 0000 0000 0000 0000 0000 0000 0000  = 1
0x c000 0000 0000 0000 0000 0000 0000 0000  = −2

Максимальное и минимальное (нормальное) число четверной точности:[3][4][2]

0x 7ffe ffff ffff ffff ffff ffff ffff ffff  ≈  1.18973149535723176508575932662800702 × 104932 
0x 0001 0000 0000 0000 0000 0000 0000 0000 ≈ 3.36210314311209350626267781732175260 * 10 -4932

Денормализованные числа четверной точности: максимальное и минимальное положительное:[2]

0x 0000 ffff ffff ffff ffff ffff ffff ffff	≈ 3.3621031431120935062626778173217520 * 10 ^-4932
0x 0000 0000 0000 0000 0000 0000 0000 0001	≈ 6.4751751194380251109244389582276466 * 10 ^-4966

Нули четверной точности:[2]

0x 0000 0000 0000 0000 0000 0000 0000 0000  = 0
0x 8000 0000 0000 0000 0000 0000 0000 0000  = −0

Бесконечности четверной точности:[2]

0x 7fff 0000 0000 0000 0000 0000 0000 0000  = ∞
0x ffff 0000 0000 0000 0000 0000 0000 0000  = −∞
0x 3ffd 5555 5555 5555 5555 5555 5555 5555  ≈  1/3
Remove ads

Поддержка

Суммиров вкратце
Перспектива

Ряд компиляторов, в том числе GCC (с версии 4.0, 2010[5]), IBM XL (10.1[5]), Intel, позволяет использовать числа точности "Quadruple" в программах на языках C/C++ и Fortran (например как тип __float128[6], long double, REAL*16), реализуя вычисления над ними программно, на 1-2 порядка более медленно, чем с точностью, поддерживаемой аппаратно[7]. Несмотря на то, что подобные вычисления можно реализовать в системах обработки чисел произвольной точности (например, GMP), существует несколько специализированных библиотек с программной реализацией "Quadruple" точности[8][9][10]. Также разрабатываются способы аппаратной реализации[11][12], но по состоянию на 2005 год в массовых процессорах четверная точность аппаратно не реализовывалась[13].

Для некоторых методов решения четверная точность позволяет ускорить сходимость (количество итераций метода) по сравнению с двойной точностью, при этом каждая итерация становится более долгой из-за использования программной реализации операций над числами[14].

Существует подход "double-double" к реализации чисел с точностью, приближенной к четверной, но использующих более короткий формат экспоненты (иногда реализуется в компиляторах Fortran для типа REAL*16). При таком подходе, например, для сложения двух чисел типа "double-double" требуется 8 операций сложения и вычитания и одно сравнение над числами двойной точности[13].

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads