Лучшие вопросы
Таймлайн
Чат
Перспективы
Camellia (алгоритм)
Из Википедии, свободной энциклопедии
Remove ads
Camellia — алгоритм симметричного блочного шифрования (размер блока 128 бит, ключ 128, 192, 256 бит), один из финалистов европейского конкурса NESSIE (наряду с AES и Shacal-2), разработка японских компаний Nippon Telegraph and Telephone Corporation и Mitsubishi Electric Corporation (представлен 10 марта 2000 г.). Сертифицирован японской организацией CRYPTREC как рекомендованный для промышленного и государственного использования алгоритм.
Camellia является дальнейшим развитием алгоритма шифрования E2, одного из алгоритмов, представленных на конкурсе AES и с использованием элементов алгоритма MISTY1.
Структура алгоритма основана на классической цепи Фейстеля с предварительным и финальным забеливанием. Цикловая функция использует нелинейное преобразование (S-блоки), блок линейного рассеивания каждые 16 циклов (побайтовая операция XOR) и байтовую перестановку.
В зависимости от длины ключа имеет 18 циклов (128 разрядный ключ), либо 24 цикла (192 и 256 разрядный ключ).
Поддержка алгоритма Camellia введена в 2008 году в браузере Mozilla Firefox 3, однако отключена в 2014 году в Mozilla Firefox 33[1]. Алгоритм патентован, однако распространяется под рядом свободных лицензий, в частности, является частью проекта OpenSSL.
Remove ads
Описание
Суммиров вкратце
Перспектива
Генерация вспомогательных ключей
- 1. Ключ (К) разбивается на 2 128-битные части KL и KR.
- 2. Вычисляем 128-битные числа KA и KB (см. схему). Переменные D1 и D2 64-битные.

D1 = (KL ^ KR) >> 64; D2 = (KL ^ KR) & MASK64; D2 = D2 ^ F(D1, C1); D1 = D1 ^ F(D2, C2); D1 = D1 ^ (KL >> 64); D2 = D2 ^ (KL & MASK64); D2 = D2 ^ F(D1, C3); D1 = D1 ^ F(D2, C4); KA = (D1 << 64) | D2; D1 = (KA ^ KR) >> 64; D2 = (KA ^ KR) & MASK64; D2 = D2 ^ F(D1, C5); D1 = D1 ^ F(D2, C6); KB = (D1 << 64) | D2;
- 3. Вычисляем вспомогательные 64-битные ключи kw1, ..., kw4, k1, ..., k24, ke1, ..., ke6 в зависимости от размера ключа:
128 бит kw1 = (KL <<< 0) >> 64; kw2 = (KL <<< 0) & MASK64; k1 = (KA <<< 0) >> 64; k2 = (KA <<< 0) & MASK64; k3 = (KL <<< 15) >> 64; k4 = (KL <<< 15) & MASK64; k5 = (KA <<< 15) >> 64; k6 = (KA <<< 15) & MASK64; ke1 = (KA <<< 30) >> 64; ke2 = (KA <<< 30) & MASK64; k7 = (KL <<< 45) >> 64; k8 = (KL <<< 45) & MASK64; k9 = (KA <<< 45) >> 64; k10 = (KL <<< 60) & MASK64; k11 = (KA <<< 60) >> 64; k12 = (KA <<< 60) & MASK64; ke3 = (KL <<< 77) >> 64; ke4 = (KL <<< 77) & MASK64; k13 = (KL <<< 94) >> 64; k14 = (KL <<< 94) & MASK64; k15 = (KA <<< 94) >> 64; k16 = (KA <<< 94) & MASK64; k17 = (KL <<< 111) >> 64; k18 = (KL <<< 111) & MASK64; kw3 = (KA <<< 111) >> 64; kw4 = (KA <<< 111) & MASK64; |
192 и 256 бит kw1 = (KL <<< 0) >> 64; kw2 = (KL <<< 0) & MASK64; k1 = (KB <<< 0) >> 64; k2 = (KB <<< 0) & MASK64; k3 = (KR <<< 15) >> 64; k4 = (KR <<< 15) & MASK64; k5 = (KA <<< 15) >> 64; k6 = (KA <<< 15) & MASK64; ke1 = (KR <<< 30) >> 64; ke2 = (KR <<< 30) & MASK64; k7 = (KB <<< 30) >> 64; k8 = (KB <<< 30) & MASK64; k9 = (KL <<< 45) >> 64; k10 = (KL <<< 45) & MASK64; k11 = (KA <<< 45) >> 64; k12 = (KA <<< 45) & MASK64; ke3 = (KL <<< 60) >> 64; ke4 = (KL <<< 60) & MASK64; k13 = (KR <<< 60) >> 64; k14 = (KR <<< 60) & MASK64; k15 = (KB <<< 60) >> 64; k16 = (KB <<< 60) & MASK64; k17 = (KL <<< 77) >> 64; k18 = (KL <<< 77) & MASK64; ke5 = (KA <<< 77) >> 64; ke6 = (KA <<< 77) & MASK64; k19 = (KR <<< 94) >> 64; k20 = (KR <<< 94) & MASK64; k21 = (KA <<< 94) >> 64; k22 = (KA <<< 94) & MASK64; k23 = (KL <<< 111) >> 64; k24 = (KL <<< 111) & MASK64; kw3 = (KB <<< 111) >> 64; kw4 = (KB <<< 111) & MASK64; |
Шифрование
Шифрование происходит по схеме Фейстеля с 18 этапами для 128-битного ключа и 24 этапами для 192- и 256-битных ключей. Каждые 6 этапов применяются функции FL и FLINV.
128 бит D1 = M >> 64; // Шифруемое сообщение делится на две 64-битные части D2 = M & MASK64; D1 = D1 ^ kw1; // Предварительное забеливание D2 = D2 ^ kw2; D2 = D2 ^ F(D1, k1); D1 = D1 ^ F(D2, k2); D2 = D2 ^ F(D1, k3); D1 = D1 ^ F(D2, k4); D2 = D2 ^ F(D1, k5); D1 = D1 ^ F(D2, k6); D1 = FL (D1, ke1); // FL D2 = FLINV(D2, ke2); // FLINV D2 = D2 ^ F(D1, k7); D1 = D1 ^ F(D2, k8); D2 = D2 ^ F(D1, k9); D1 = D1 ^ F(D2, k10); D2 = D2 ^ F(D1, k11); D1 = D1 ^ F(D2, k12); D1 = FL (D1, ke3); // FL D2 = FLINV(D2, ke4); // FLINV D2 = D2 ^ F(D1, k13); D1 = D1 ^ F(D2, k14); D2 = D2 ^ F(D1, k15); D1 = D1 ^ F(D2, k16); D2 = D2 ^ F(D1, k17); D1 = D1 ^ F(D2, k18); D2 = D2 ^ kw3; // Финальное забеливание D1 = D1 ^ kw4; C = (D2 << 64) | D1; |
192 и 256 бит D1 = M >> 64; // Шифруемое сообщение делится на две 64-битные части D2 = M & MASK64; D1 = D1 ^ kw1; // Предварительное забеливание D2 = D2 ^ kw2; D2 = D2 ^ F(D1, k1); D1 = D1 ^ F(D2, k2); D2 = D2 ^ F(D1, k3); D1 = D1 ^ F(D2, k4); D2 = D2 ^ F(D1, k5); D1 = D1 ^ F(D2, k6); D1 = FL (D1, ke1); // FL D2 = FLINV(D2, ke2); // FLINV D2 = D2 ^ F(D1, k7); D1 = D1 ^ F(D2, k8); D2 = D2 ^ F(D1, k9); D1 = D1 ^ F(D2, k10); D2 = D2 ^ F(D1, k11); D1 = D1 ^ F(D2, k12); D1 = FL (D1, ke3); // FL D2 = FLINV(D2, ke4); // FLINV D2 = D2 ^ F(D1, k13); D1 = D1 ^ F(D2, k14); D2 = D2 ^ F(D1, k15); D1 = D1 ^ F(D2, k16); D2 = D2 ^ F(D1, k17); D1 = D1 ^ F(D2, k18); D1 = FL (D1, ke5); // FL D2 = FLINV(D2, ke6); // FLINV D2 = D2 ^ F(D1, k19); D1 = D1 ^ F(D2, k20); D2 = D2 ^ F(D1, k21); D1 = D1 ^ F(D2, k22); D2 = D2 ^ F(D1, k23); D1 = D1 ^ F(D2, k24); D2 = D2 ^ kw3; // Финальное забеливание D1 = D1 ^ kw4; C = (D2 << 64) | D1; |
Вспомогательные функции F, FL, FLINV
F-, FL- и FLINV-функции на вход получают 2 64-битных параметра - данные F_IN и ключ KE.
Функция F использует 16 8-битных переменных t1, ..., t8, y1, ..., y8 и 1 64-битную переменную. На выходе функции 64-битное число.
Функции FL и FLINV используют 4 32-битные переменные x1,x2,k1,k2. На выходе функции 64-битное число. Функция FLINV - обратная к FL
F-функция x = F_IN ^ KE; t1 = x >> 56; t2 = (x >> 48) & MASK8; t3 = (x >> 40) & MASK8; t4 = (x >> 32) & MASK8; t5 = (x >> 24) & MASK8; t6 = (x >> 16) & MASK8; t7 = (x >> 8) & MASK8; t8 = x & MASK8; t1 = SBOX1[t1]; t2 = SBOX2[t2]; t3 = SBOX3[t3]; t4 = SBOX4[t4]; t5 = SBOX2[t5]; t6 = SBOX3[t6]; t7 = SBOX4[t7]; t8 = SBOX1[t8]; y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8; y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8; y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8; y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7; y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8; y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8; y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8; y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7; F_OUT = (y1 << 56) | (y2 << 48) | (y3 << 40) | (y4 << 32)| (y5 << 24) | (y6 << 16) | (y7 << 8) | y8; |
FL-функция var x1, x2 as 32-bit unsigned integer; var k1, k2 as 32-bit unsigned integer; x1 = FL_IN >> 32; x2 = FL_IN & MASK32; k1 = KE >> 32; k2 = KE & MASK32; x2 = x2 ^ ((x1 & k1) <<< 1); x1 = x1 ^ (x2 | k2); FL_OUT = (x1 << 32) | x2; |
FLINV-функция var y1, y2 as 32-bit unsigned integer; var k1, k2 as 32-bit unsigned integer; y1 = FLINV_IN >> 32; y2 = FLINV_IN & MASK32; k1 = KE >> 32; k2 = KE & MASK32; y1 = y1 ^ (y2 | k2); y2 = y2 ^ ((y1 & k1) <<< 1); FLINV_OUT = (y1 << 32) | y2; |
S - блоки
Значение функции SBOX1 определяется из следующей таблицы:
Для примера: SBOX1(0x7a)=232.
SBOX2, SBOX3 и SBOX4 определяются из SBOX1 следующим образом:
SBOX2[x] = SBOX1[x] <<< 1; SBOX3[x] = SBOX1[x] <<< 7; SBOX4[x] = SBOX1[x <<< 1];
Расшифрование
Алгоритм расшифрования идентичен шифрованию, с тем лишь различием, что вспомогательные ключи меняются местами по следующей схеме, в зависимости от длины исходного ключа:
Remove ads
Пример шифрования
Ключ: 0123456789abcdeffedcba9876543210
Шифруемое сообщение: 0123456789abcdeffedcba9876543210
Зашифрованное сообщение: 67673138549669730857065648eabe43
Ключи k[1]=ae71c3d55ba6bf1d k[2]=169240a795f89256 k[3]=a2b3c4d5e6f7ff6e k[4]=5d4c3b2a19080091 k[5]=e1eaadd35f8e8b49 k[6]=2053cafc492b5738 k[7]=79bdffdb97530eca k[8]=8642002468acf135 k[9]=d7e3a2d24814f2bf k[10]=00123456789abcde k[11]=d169240a795f8уцкв k[12]=6ae71c3d55ba6bf1 k[13]=1d950c840048d159 k[14]=e26af37bffb72ea6 k[15]=e57e2495ab9c70f5 k[16]=56e9afc745a49029 kw[1]=0123456789abcdef kw[2]=fedcba9876543210 kw[3]=492b5738e1eaadd3 kw[4]=5f8e8b492053cafc ke[1]=56e9afc745a49029 ke[2]=e57e2495ab9c70f5 ke[3]=97530eca86420024 ke[4]=68acf13579bdffdb |
Remove ads
Криптостойкость
По словам авторов алгоритма:
Мы доказали, что успех дифференциального[2] и линейного [3] криптоанализов практически невозможен против полного цикла Camellia с 18 этапами. Более того, Camellia был разработан для того, чтобы противостоять более сложным криптографическим атакам, таким как дифференциальные атаки высоких порядков[4][5], интерполяционные атаки[6][7], атаки "на связанных ключах"[8][9], укороченные дифференциальные атаки[10][11] и другие
Оригинальный текст (англ.)We confirmed that it is extremely unlikely that differential and linear attacks will succeed against the full 18-round Camellia. Moreover, Camellia was designed to offer security against other advanced cryptanalytic attacks including higher order differential attacks, interpolation attacks, related-key attacks, truncated differential attacks, and so on
Применение
Поддержка Camellia была добавлена в финальной версии Mozilla Firefox 3 в 2008 году[12]. Позднее в том же году команда разработчиков FreeBSD объявила, что поддержка данного шифрования также была включена в FreeBSD 6.4-RELEASE. В сентябре 2009 года GNU Privacy Guard добавили поддержку Camellia в версии 1.4.10. Кроме того, многие популярные библиотеки безопасности, такие как Crypto++, GnuTLS, PolarSSL и OpenSSL[13] также включают в себя поддержку Camellia.
Remove ads
Сравнение с аналогами
Remove ads
Разработчики
- Kazumaro Aoki
- Tetsuya Ichikawa
- Masayuki Kanda
- Mitsuru Matsui
- Shiho Moriai
- Junko Nakajima
- Toshio Tokita
- Nippon Telegraph and Telephone Corporation
- Mitsubishi Electric Corporation
См. также
Примечания
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads