Лучшие вопросы
Таймлайн
Чат
Перспективы

Hopper (микроархитектура)

Из Википедии, свободной энциклопедии

Remove ads

Hopper — микроархитектура профессиональных графических процессоров класса Server/Datacenter, представленная в марте 2022 года и разработанная корпорацией NVIDIA Corporation в качестве преемника микроархитектуры Ampere. Она названа в честь Грейс Мюррей Хоппер (англ. Grace Murray Hopper) — американской учёной в области информатики и контр-адмирала Военно-морских сил США, которая была одной из первых программистов компьютера Марк I.

Краткие факты Nvidia Hopper, Кодовое имя ...

Микроархитектура Hopper с тензорными ядрами была анонсирована в конце марта 2022 года и впервые появилась в ускорителе GPGPU-вычислений уровня дата-центра NVIDIA H100 с 80 Гбайт HBM3 памяти, который содержит порядка 80 млрд транзисторов. Ускорители NVIDIA H100, например, используются в HPC-серверах Nvidia DGX H100 для машинного обучения систем искусственного интеллекта[1][2].

Не существует массовых видеокарт десктопного уровня серии GeForce на базе микроархитектуры Hopper. В сентябре же 2022 года были представлены графические ускорители десктопного уровня серии GeForce RTX 40 с упрощённой микроархитектурой Ada Lovelace, названной в честь математика Ады Лавлейс, которая также пришли на смену микроархитектуры Ampere[3].

Remove ads

Технические подробности

Архитектурные усовершенствования микроархитектуры Hopper включают следующее:

  • CUDA Compute Capability 9.0
  • Память с высокой пропускной способностью 3-го поколения (HBM3).
  • NVLink 4.0: шина с высокой пропускной способностью между центральным процессором и графическим процессором, а также между несколькими графическими процессорами. Обеспечивает гораздо более высокие скорости передачи, чем те, которые достижимы при использовании PCI Express; обеспечивает скорость 50 Гбайт/с на один канал и до 900 Гбайт/с (18 × 50 Гбайт/с) на один GPU.
  • Тензорные ядра: Тензорное ядро — это объект, который умножает две матрицы FP16 4×4, а затем добавляет к результату третью матрицу FP16 или FP32 с помощью операций умножения примесей и получает результат FP32, который при необходимости можно понизить до результатов FP16. Тензорные ядра предназначены для ускорения обучения нейронных сетей.
Remove ads

Спецификации

Суммиров вкратце
Перспектива

Сравнительная таблица GP100, GV100, GA100 и GH100[4][5]

Подробнее GPU features, NVIDIA Tesla P100 ...

Матрица сравнения поддержания точности вычислений[6][7]

Подробнее FP8, FP16 ...

Обозначение:

  • FPnn: floating point with nn bits
  • INTn: integer with n bits
  • INT1: binary
  • TF32: TensorFloat32
  • BF16: bfloat16

Сравнение мощностей декодирования

Подробнее H.264 decode (1080p30), H.265 (HEVC) decode (1080p30) ...
Подробнее JPEG 4:4:4 decode(1080p), JPEG 4:2:0 decode(1080p) ...
Remove ads

GPGPU-ускорители

Ускорители GPGPU-вычислений с тензорными ядрами, в которых используются чипы с микроархитектурой Hopper:

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads