Логика высказываний, пропозициональная логика (лат. propositio — «высказывание»[1]) или исчисление высказываний[2], также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные[3].

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений[2].

Язык логики высказываний

Язык логики высказываний (пропозициональный язык[4]) — формализованный язык, предназначенный для анализа логической структуры сложных высказываний[1].

Синтаксис логики высказываний

Исходные символы, или алфавит языка логики высказываний[5]:

  • множество пропозициональных переменных (пропозициональных букв):
  • пропозициональные связки (логические союзы):
Подробнее , ...
СимволЗначение
 Знак отрицания
 или &Знак конъюнкции («логическое И»)
Знак дизъюнкции («логическое ИЛИ»)
 Знак импликации
Закрыть
  • Вспомогательные символы: левая скобка (, правая скобка ).[6]

Пропозициональные формулы

Пропозициональная формула — слово языка логики высказываний[7], то есть конечная последовательность знаков алфавита, построенная по изложенным ниже правилам и образующая законченное выражение языка логики высказываний[1].

Индуктивное определение множества формул логики высказываний:[4][1]

  1. Если , то (всякая пропозициональная переменная есть формула);
  2. если  — формула, то  — тоже формула;
  3. если и  — произвольные формулы, то , , — тоже формулы.

Других формул в языке логики высказываний нет.

Форма Бэкуса — Наура, определяющая синтаксис логики высказываний, имеет запись:

Заглавные латинские буквы , и другие, которые употребляются в определении формулы, принадлежат не языку логики высказываний, а его метаязыку, то есть языку, который используется для описания самого языка логики высказываний. Содержащие метабуквы выражения , и другие — не пропозициональные формулы, а схемы формул. Например, выражение есть схема, под которую подходят формулы , и другие[1].

Относительно любой последовательности знаков алфавита языка логики высказываний можно решить, является она формулой или нет. Если эта последовательность может быть построена в соответствии с пп. 1—3 определения формулы, то она формула, если нет, то не формула[1].


Соглашения о скобках

Поскольку в построенных по определению формулах оказывается слишком много скобок, иногда и не обязательных для однозначного понимания формулы, существует соглашение о скобках, по которому некоторые из скобок можно опускать. Записи с опущенными скобками восстанавливаются по следующим правилам.

  • Если опущены внешние скобки, то они восстанавливаются.
  • Если рядом стоят две конъюнкции или дизъюнкции (например, ), то в скобки заключается сначала самая левая часть (то есть эти связки левоассоциативны).
  • Если рядом стоят разные связки, то скобки расставляются согласно приоритетам: и (от высшего к низшему).

Когда говорят о длине формулы, имеют в виду длину подразумеваемой (восстанавливаемой) формулы, а не сокращённой записи.

Например: запись означает формулу , а её длина равна 12.

Формализация и интерпретация

Как и любой другой формализованный язык, язык логики высказываний можно рассматривать как множество всех слов, построенных с использованием алфавита этого языка[8]. Язык логики высказываний можно рассматривать как множество всевозможных пропозициональных формул[4]. Предложения естественного языка могут быть переведены на символический язык логики высказываний, где они будут представлять собой формулы логики высказываний. Процесс перевода высказывания в формулу языка логики высказываний называется формализацией. Обратный процесс подстановки вместо пропозициональных переменных конкретных высказываний называется интерпретацией[9].

Аксиомы и правила вывода формальной системы логики высказываний

Одним из возможных вариантов (гильбертовской) аксиоматизации логики высказываний является следующая система аксиом:

;

;

;

;

;

;

;

;

;

;

.

вместе с единственным правилом:

(Modus ponens)

Теорема корректности исчисления высказываний утверждает, что все перечисленные выше аксиомы являются тавтологиями, а с помощью правила modus ponens из истинных высказываний можно получить только истинные. Доказательство этой теоремы тривиально и сводится к непосредственной проверке. Куда более интересен тот факт, что все остальные тавтологии можно получить из аксиом с помощью правила вывода — это так называемая теорема полноты логики высказываний.

Таблицы истинности основных операций

Основной задачей логики высказываний является установление истинностного значения формулы, если даны истинностные значения входящих в неё переменных. Истинностное значение формулы в таком случае определяется индуктивно (с шагами, которые использовались при построении формулы) с использованием таблиц истинности связок[10].

Пусть  — множество всех истинностных значений , а  — множество пропозициональных переменных. Тогда интерпретацию (или модель) языка логики высказываний можно представить в виде отображения

,

которое каждую пропозициональную переменную сопоставляет с истинностным значением [10].

Оценка отрицания задаётся таблицей:

Подробнее , ...
Закрыть

Значения двухместных логических связок (импликация), (дизъюнкция) и (конъюнкция) определяются так:

Подробнее , ...
Закрыть

Тождественно истинные формулы (тавтологии)

Формула является тождественно истинной, если она истинна при любых значениях входящих в неё переменных (то есть, при любой интерпретации)[11]. Далее перечислены несколько широко известных примеров тождественно истинных формул логики высказываний:

;
;
;
  • законы поглощения:
;
;
;
.

См. также

Примечания

Литература

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.