Nelinearni sistem

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

U matematici i nauci, nelinearni sistem je sistem u kome promena izlaza nije proporcionalna promeni na ulazu.[1][2][3] Nelinearni problemi su važni za inženjere, biologe,[4][5][6] fizičare,[7][8] matematičare i mnoge druge naučnike, jer je većina sistema po svojoj prirodi nelinearna.[9] Nelinearni dinamički sistemi, koji opisuju promene promenljivih tokom vremena, mogu se činiti haotičnim, nepredvidljivim ili kontraintuitivnim, za razliku od mnogo jednostavnijih linearnih sistema.

Tipično, ponašanje nelinearnog sistema opisano je u matematici nelinearnim sistemom jednačina, koje su skup istovremenih jednačina u kojima se nepoznate (ili nepoznate funkcije u slučaju diferencijalnih jednačina) pojavljuju kao promenljive polinoma sa stepenom većim od jedan ili u argumentu funkcije koja nije polinom stepena jedan. Drugim rečima, u nelinearnom sistemu jednačina jednačine koje treba rešiti ne mogu se zapisati kao linearna kombinacija nepoznatih promenljivih ili funkcija koje se pojavljuju u njima. Sistemi se mogu definisati kao nelinearni, bez obzira da li se poznate linearne funkcije pojavljuju u jednačinama. Konkretno, diferencijalna jednačina je linearna ako je linearna u odnosu na nepoznatu funkciju i njene derivate, čak i ako je nelinearna u pogledu ostalih promenljivih koje se u njoj pojavljuju.

Kako je nelinearne dinamičke jednačine teško rešiti, nelinearni sistemi se obično aproksimiraju linearnim jednačinama (lineararizacija). To dobro funkcioniše do neke tačnosti i određenog opsega ulaznih vrednosti, mada se neki zanimljivi fenomeni, poput solitona, haosa,[10] i singulariteta, skrivaju linearizacijom. Iz ovog sledi da se neki aspekti dinamičkog ponašanja nelinearnog sistema mogu činiti kontratuktivnim, nepredvidljivim ili čak haotičnim. Iako takvo haotično ponašanje može da liči na slučajno ponašanje, ono zapravo nije randomno. Na primer, neki aspekti vremenskih prilika izgledaju haotično, pri čemu jednostavne promene u jednom delu sistema proizvode složene efekte širom sistema. Ova nelinearnost je jedan od razloga zašto su precizne dugoročne metereološke prognoze nemoguće sa sadašnjom tehnologijom.

Neki autori koriste termin nelinearna nauka za izučavanje nelinearnih sistemsa. Drugi to osporavaju, poput Stanislava Ulama: „Korištenje izraza kao što je nelinearna nauka slično je pozivanju na najveći deo zoologije kao na proučavanje neslonovskih životinja.”[11]

Remove ads

Definicija

U matematici, linearna mapa (ili linearna funkcija) je ona koja zadovoljava sledeća svojstva:

  • Aditivnost ili princip superpozicije:
  • Homogenost:

Aditivnost podrazumeva homogenost za svako racionalno α, i, za neprekidne funkcije, za svako realno α. Za kompleksno α, homogenost ne sledi iz aditivnosti. Na primer, antilinearna mapa je aditivna, ali nije homogena. Uslovi aditivnosti i homogenosti se često kombinuju u principu superpozicije

Jednačina napisana kao

se naziva linearnom ako je linearna mapa (kao što je gore definisanao), a inače nonlinearna. Jednačina se naziva homogenom ako je .

Definicija je veoma generalna u smislu da može da bude bilo koji senzibilni matematički objekat (broj, vektor, funkcija, etc.), i funkcija može doslovno da bude bilo koje mapiranje, uključujući integraciju ili diferencijaciju sa asociranim ograničenjima (kao što su granične vrednosti). Ako sadrži diferencijaciju u odnosu na , rezultat će biti diferencijalna jednačina.

Remove ads

Nelinearne algebrske jednačine

Glavni članci: Algebarska jednačina i Sistem polinomskih jednačina

Nelinearne algebarske jednačine, koje se takođe nazivaju polinomskim jednačinama, definisane su izjednačavanjem polinoma (stepena većeg od jedan) sa nulom. Na primer,

Za pojedinačnu polinomsku jednačinu, algoritmi nalaženje korena se mogu koristiti za nalaženje rešenja jednačine (tj. skupa vrednosti promenljivih koje zadovoljavaju jednačinu). Međutim, sistemi algebarskih jednačina su komplikovaniji; njihovo proučavanje je jedna od motivacija polja algebarske geometrije, tegobne grane savremene matematike. Često je teško čak i da se odluči da li određeni algebrski sistem ima kompleksna rešenja (pogledajte teoremu nula[12][13]). Ipak, u slučaju sistema sa ograničenim brojem složenih rešenja, ovi sistemi polinomnih jednačina su sada dobro izučeni i postoje efikasne metode za njihovo rešavanje.[14]

Remove ads

Izvori

Vanjske veze

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads