Slijedi popis integrala (antiderivacija funkcija) hiperbolnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala. Za konstantu c se pretpostavlja da je različita od nule. ∫ sinh c x d x = 1 c cosh c x {\displaystyle \int \sinh cx\,dx={\frac {1}{c}}\cosh cx} ∫ cosh c x d x = 1 c sinh c x {\displaystyle \int \cosh cx\,dx={\frac {1}{c}}\sinh cx} ∫ sinh 2 c x d x = 1 4 c sinh 2 c x − x 2 {\displaystyle \int \sinh ^{2}cx\,dx={\frac {1}{4c}}\sinh 2cx-{\frac {x}{2}}} također: ∫ d x sinh c x = 1 c ln | cosh c x − 1 sinh c x | {\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\sinh cx}}\right|} također: ∫ d x sinh c x = 1 c ln | sinh c x cosh c x + 1 | {\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\sinh cx}{\cosh cx+1}}\right|} također: ∫ d x sinh c x = 1 c ln | cosh c x − 1 cosh c x + 1 | {\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\cosh cx+1}}\right|} ∫ d x cosh c x = 2 c arctan e c x {\displaystyle \int {\frac {dx}{\cosh cx}}={\frac {2}{c}}\arctan e^{cx}} ∫ d x sinh n c x = cosh c x c ( n − 1 ) sinh n − 1 c x − n − 2 n − 1 ∫ d x sinh n − 2 c x (za n ≠ 1 ) {\displaystyle \int {\frac {dx}{\sinh ^{n}cx}}={\frac {\cosh cx}{c(n-1)\sinh ^{n-1}cx}{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}cx}}\qquad {\mbox{(za }}n\neq 1{\mbox{)}}} ∫ d x cosh n c x = sinh c x c ( n − 1 ) cosh n − 1 c x + n − 2 n − 1 ∫ d x cosh n − 2 c x (za n ≠ 1 ) {\displaystyle \int {\frac {dx}{\cosh ^{n}cx}}={\frac {\sinh cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}cx}}\qquad {\mbox{(za }}n\neq 1{\mbox{)}}} ∫ cosh n c x sinh m c x d x = cosh n − 1 c x c ( n − m ) sinh m − 1 c x + n − 1 n − m ∫ cosh n − 2 c x sinh m c x d x (za m ≠ n ) {\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx={\frac {\cosh ^{n-1}cx}{c(n-m)\sinh ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m}cx}}dx\qquad {\mbox{(za }}m\neq n{\mbox{)}}} također: ∫ tanh c x d x = 1 c ln | cosh c x | {\displaystyle \int \tanh cx\,dx={\frac {1}{c}}\ln |\cosh cx|} ∫ coth c x d x = 1 c ln | sinh c x | {\displaystyle \int \coth cx\,dx={\frac {1}{c}}\ln |\sinh cx|} ∫ tanh n c x d x = − 1 c ( n − 1 ) tanh n − 1 c x + ∫ tanh n − 2 c x d x (za n ≠ 1 ) {\displaystyle \int \tanh ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\tanh ^{n-1}cx+\int \tanh ^{n-2}cx\,dx\qquad {\mbox{(za }}n\neq 1{\mbox{)}}} ∫ coth n c x d x = − 1 c ( n − 1 ) coth n − 1 c x + ∫ coth n − 2 c x d x (za n ≠ 1 ) {\displaystyle \int \coth ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\coth ^{n-1}cx+\int \coth ^{n-2}cx\,dx\qquad {\mbox{(za }}n\neq 1{\mbox{)}}} ∫ sinh b x sinh c x d x = 1 b 2 − c 2 ( b sinh c x cosh b x − c cosh c x sinh b x ) (za b 2 ≠ c 2 ) {\displaystyle \int \sinh bx\sinh cx\,dx={\frac {1}{b^{2c^{2}}}(b\sinh cx\cosh bx-c\cosh cx\sinh bx)\qquad {\mbox{(za }}b^{2}\neq c^{2}{\mbox{)}}} ∫ cosh b x cosh c x d x = 1 b 2 − c 2 ( b sinh b x cosh c x − c sinh c x cosh b x ) (za b 2 ≠ c 2 ) {\displaystyle \int \cosh bx\cosh cx\,dx={\frac {1}{b^{2c^{2}}}(b\sinh bx\cosh cx-c\sinh cx\cosh bx)\qquad {\mbox{(za }}b^{2}\neq c^{2}{\mbox{)}}} ∫ cosh b x sinh c x d x = 1 b 2 − c 2 ( b sinh b x sinh c x − c cosh b x cosh c x ) (za b 2 ≠ c 2 ) {\displaystyle \int \cosh bx\sinh cx\,dx={\frac {1}{b^{2c^{2}}}(b\sinh bx\sinh cx-c\cosh bx\cosh cx)\qquad {\mbox{(za }}b^{2}\neq c^{2}{\mbox{)}}} ∫ sinh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) − c a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)} ∫ sinh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)} ∫ cosh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) − c a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)} ∫ cosh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)} Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads