Slijedi popis integrala (antiderivacija funkcija) eksponencijalnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala. ∫ e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}} , ali ∫ e 2 x d x = 2 e 2 x {\displaystyle \int e^{2x}\;dx=2e^{2x}} ∫ a c x d x = 1 c ln a a c x (za a > 0 , a ≠ 1 ) {\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(za }}a>0,{\mbox{ }}a\neq 1{\mbox{)}}} ∫ x e c x d x = e c x c 2 ( c x − 1 ) {\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)} ∫ x 2 e c x d x = e c x ( x 2 c − 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)} ∫ x n e c x d x = 1 c x n e c x − n c ∫ x n − 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}\frac {n}{c}}\int x^{n-1}e^{cx}dx} ∫ e c x x d x = ln | x | + ∑ i = 1 ∞ ( c x ) i i ⋅ i ! {\displaystyle \int {\frac {e^{cx}}{x}}\;dx=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}} ∫ e c x x n d x = 1 n − 1 ( − e c x x n − 1 + c ∫ e c x x n − 1 d x ) (za n ≠ 1 ) {\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;dx={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,dx\right)\qquad {\mbox{(za }}n\neq 1{\mbox{)}}} ∫ e c x ln x d x = 1 c e c x ln | x | − Ei ( c x ) {\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)} ∫ e c x sin b x d x = e c x c 2 + b 2 ( c sin b x − b cos b x ) {\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)} ∫ e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sin b x ) {\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)} ∫ e c x sin n x d x = e c x sin n − 1 x c 2 + n 2 ( c sin x − n cos x ) + n ( n − 1 ) c 2 + n 2 ∫ e c x sin n − 2 x d x {\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx} ∫ e c x cos n x d x = e c x cos n − 1 x c 2 + n 2 ( c cos x + n sin x ) + n ( n − 1 ) c 2 + n 2 ∫ e c x cos n − 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx} ∫ x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}} ∫ e − c x 2 d x = π 4 c erf ( c x ) {\displaystyle \int e^{-cx^{2}}\;dx={\sqrt {\frac {\pi }{4c}}}{\mbox{erf}}({\sqrt {c}}x)} ( erf {\displaystyle {\mbox{erf}}} je funkcija grješke (error function)) ∫ x e − c x 2 d x = − 1 2 c e − c x 2 {\displaystyle \int xe^{-cx^{2}}\;dx=-{\frac {1}{2c}}e^{-cx^{2}}} ∫ 1 σ 2 π e − ( x − μ ) 2 / 2 σ 2 d x = 1 2 ( 1 + erf x − μ σ 2 ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2}}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})} ∫ e x 2 d x = e x 2 ( ∑ j = 0 n − 1 c 2 j 1 x 2 j + 1 ) + ( 2 n − 1 ) c 2 n − 2 ∫ e x 2 x 2 n d x valjano za n > 0 , {\displaystyle \int e^{x^{2}}\,dx=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;dx\quad {\mbox{valjano za }}n>0,} pri čemu je c 2 j = 1 ⋅ 3 ⋅ 5 ⋯ ( 2 j − 1 ) 2 j + 1 = ( 2 j ) ! j ! 2 2 j + 1 . {\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}\ .} Remove adsOdređeni integrali ∫ 0 ∞ e − a x 2 d x = 1 2 π a ( a > 0 ) {\displaystyle \int _{0}^{\infty }e^{-ax^{2}}\,dx={\frac {1}{2}}{\sqrt {\pi \over a}}\quad (a>0)} (Gaussov integral) ∫ − ∞ ∞ e − a x 2 d x = π a ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,dx={\sqrt {\pi \over a}}\quad (a>0)} ∫ − ∞ ∞ e − a x 2 e 2 b x d x = π a e b 2 a ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}e^{2bx}\,dx={\sqrt {\frac {\pi }{a}}}e^{\frac {b^{2}}{a}}\quad (a>0)} ∫ − ∞ ∞ x e − a ( x − b ) 2 d x = b π a ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,dx=b{\sqrt {\pi \over a}}\quad (a>0)} ∫ − ∞ ∞ x 2 e − a x 2 d x = 1 2 π a 3 ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,dx={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}\quad (a>0)} ∫ 0 ∞ x n e − a x 2 d x = { 1 2 Γ ( n + 1 2 ) / a n + 1 2 ( n > − 1 , a > 0 ) ( 2 k − 1 ) ! ! 2 k + 1 a k π a ( n = 2 k , k cijeli broj , a > 0 ) k ! 2 a k + 1 ( n = 2 k + 1 , k cijeli broj , a > 0 ) {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{2}}\,dx={\begin{cases}{\frac {1}{2}}\Gamma \left({\frac {n+1}{2}}\right)/a^{\frac {n+1}{2}}&(n>-1,a>0)\\{\frac {(2k-1)!!}{2^{k+1}a^{k}}}{\sqrt {\frac {\pi }{a}}}&(n=2k,k\;{\text{cijeli broj}},a>0)\\{\frac {k!}{2a^{k+1}}}&(n=2k+1,k\;{\text{cijeli broj}},a>0)\end{cases}}} (!! je dvostruka faktorijela) ∫ 0 ∞ x n e − a x d x = { Γ ( n + 1 ) a n + 1 ( n > − 1 , a > 0 ) n ! a n + 1 ( n = 0 , 1 , 2 , … , a > 0 ) {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\,dx={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}}}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}}}&(n=0,1,2,\ldots ,a>0)\\\end{cases}}} ∫ 0 ∞ e − a x sin b x d x = b a 2 + b 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,dx={\frac {b}{a^{2}+b^{2}}}\quad (a>0)} ∫ 0 ∞ e − a x cos b x d x = a a 2 + b 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,dx={\frac {a}{a^{2}+b^{2}}}\quad (a>0)} ∫ 0 ∞ x e − a x sin b x d x = 2 a b ( a 2 + b 2 ) 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }xe^{-ax}\sin bx\,dx={\frac {2ab}{(a^{2}+b^{2})^{2}}}\quad (a>0)} ∫ 0 ∞ x e − a x cos b x d x = a 2 − b 2 ( a 2 + b 2 ) 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }xe^{-ax}\cos bx\,dx={\frac {a^{2b^{2}}{(a^{2}+b^{2})^{2}}}\quad (a>0)} ∫ 0 2 π e x cos θ d θ = 2 π I 0 ( x ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)} ( I 0 {\displaystyle I_{0}} je modificirana Besselova funkcija prve vrste) ∫ 0 2 π e x cos θ + y sin θ d θ = 2 π I 0 ( x 2 + y 2 ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)} Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads