Simbolet në matematikë shërbejne për krijimin e termeve (shprehjeve) matematikore dhe lidhjen e tyre në forma më komplekse. Me kalimin e kohës dhe sidomosë me zhvillimin e matematikes logjike fjalori i matematikes është pasuruar dhe pasurohet gjithnjë e më shumë me simbole të reja. Zakonishtë për simbolizimin e variableve të ndryshme, varsisht nga lëmia përdoren shkronjat e alfabetit latin dhe alfabetit të vjeter grekë. Remove adsSimbolet matematikore në gjuhë elektronike Java C++ HTML Simbolet matematikore në Wikipedia Kjo përmbledhje shërben për momentë për redaktuesit e artikujve matematikorë në Wikipedi që nuk kanë kohë për të gjurmuar më tepër në Wikipedia. Lidhëse të termeve dhe simboleve matematikore Për Shkruhet në Wikipedia Në Matematikë shkruhet si Trigonometri \sin x + \ln y +\operatorname{sgn} z sin x + ln y + sgn z {\displaystyle \sin x+\ln y+\operatorname {sgn} z} Derivate \nabla \partial x dx \dot x \ddot y ∇ ∂ x d x x ˙ y ¨ {\displaystyle \nabla \ \partial x\ dx\ {\dot {x}}\ {\ddot {y}}} Bashkësitë \forall x \not\in \varnothing \subseteq A \cap \bigcap B \cup \bigcup \exists \{x,y\}\times C ∀ x ∉ ∅ ⊆ A ∩ ⋂ B ∪ ⋃ ∃ { x , y } < b r / > × C {\displaystyle \forall x\not \in \varnothing \subseteq A\cap \bigcap B\cup \bigcup \exists \{x,y\}<br/>\times C} Logjikë p \land \bar{q} \to p\lor \lnot q p ∧ q ¯ → p ∨ ¬ q {\displaystyle p\land {\bar {q}}\to p\lor \lnot q} Rrënjët \sqrt{2}\approx 1.4 2 ≈ 1.4 {\displaystyle {\sqrt {2}}\approx 1.4} \sqrt[n]{x} x n {\displaystyle {\sqrt[{n}]{x}}} Relacione \sim \simeq \cong \le \ge \equiv \not\equiv \approx \ne \propto ∼ ≃ ≅ ≤ ≥ ≡ ≢ ≈ ≠ ∝ {\displaystyle \sim \ \simeq \ \cong \ \leq \ \geq \ \equiv \ \not \equiv \ \approx \ \neq \ \propto } Gjeometri 45^\circ △ ∠ ⊥ ‖ 45 ∘ {\displaystyle \triangle \ \angle \perp \|\ 45^{\circ }} Kahje/drejtim \leftarrow \rightarrow \leftrightarrow\longleftarrow \longrightarrow\mapsto \longmapsto\nearrow \searrow \swarrow \nwarrow\uparrow \downarrow \updownarrow ← → ↔ {\displaystyle \leftarrow \ \rightarrow \ \leftrightarrow } ⟵ ⟶ {\displaystyle \longleftarrow \ \longrightarrow } ↦ ⟼ {\displaystyle \mapsto \ \longmapsto } ↗ ↘ ↙ ↖ {\displaystyle \nearrow \ \searrow \ \swarrow \ \nwarrow } ↑ ↓ ↕ {\displaystyle \uparrow \ \downarrow \ \updownarrow } \Leftarrow \Rightarrow \Leftrightarrow\Longleftarrow \Longrightarrow \Longleftrightarrow\Uparrow \Downarrow \Updownarrow ⇐ ⇒ ⇔ {\displaystyle \Leftarrow \ \Rightarrow \ \Leftrightarrow } ⟸ ⟹ ⟺ {\displaystyle \Longleftarrow \ \Longrightarrow \ \Longleftrightarrow } ⇑ ⇓ ⇕ {\displaystyle \Uparrow \ \Downarrow \ \Updownarrow } Speciale \oplus \otimes \pm \mp \hbar \wr \dagger \ddagger \star * \ldots \circ \cdot \times\bullet \infty \vdash \models ⊕ ⊗ ± ∓ ℏ ≀ † ‡ ⋆ ∗ … {\displaystyle \oplus \otimes \pm \mp \hbar \wr \dagger \ddagger \star *\ldots } ∘ ⋅ × ∙ ∞ ⊢ ⊨ {\displaystyle \circ \cdot \times \bullet \ \infty \ \vdash \ \models } Lidhësa tjera \mathcal {45abcdenpqstuvwx} 45 a b c d e n p q s t u v w x {\displaystyle {\mathcal {45abcdenpqstuvwx}}} bba5 Fuqizimi, indekset dhe integralet Më shumë informacion , ... Për Shkruhet në Wikipedia Në Matematikë shkruhet si Fuqizimë a^2 Bskstjww Indeksimë a_2 a 2 {\displaystyle a_{2}} a 2 {\displaystyle a_{2}\,\!} I. të grupuarë a^{2+2} a 2 + 2 {\displaystyle a^{2+2}} a 2 + 2 {\displaystyle a^{2+2}\,\!} a_{i,j} a i , j {\displaystyle a_{i,j}} a i , j {\displaystyle a_{i,j}\,\!} II. të grupuarë x_2^3 x 2 3 {\displaystyle x_{2}^{3}} I. Derivate (mirë) x' x ′ {\displaystyle x'} x ′ {\displaystyle x'\,\!} Ia. Derivate (gabim HTML) x^\prime x ′ {\displaystyle x^{\prime }} x ′ {\displaystyle x^{\prime }\,\!} Ia. Derivate (gabim PNG) x\prime x ′ {\displaystyle x\prime } x ′ {\displaystyle x\prime \,\!} II. Derivate \dot{x}, \ddot{x} x ˙ , x ¨ {\displaystyle {\dot {x}},{\ddot {x}}} III. Derivate \hat a \bar b \vec c \widehat {d e f} \overline {g h i} \underline {j k l} a ^ b ¯ c → d e f ^ g h i ¯ j k l _ {\displaystyle {\hat {a}}\ {\bar {b}}\ {\vec {c}}\ {\widehat {def}}\ {\overline {ghi}}\ {\underline {jkl}}} Shuma \sum_{k=1}^N k^2 ∑ k = 1 N k 2 {\displaystyle \sum _{k=1}^{N}k^{2}} Produkt \prod_{i=1}^N x_i ∏ i = 1 N x i {\displaystyle \prod _{i=1}^{N}x_{i}} Limit \lim_{n \to \infty}x_n lim n → ∞ x n {\displaystyle \lim _{n\to \infty }x_{n}} I. Integral \int_{-N}^{N} e^x\, dx ∫ − N N e x d x {\displaystyle \int _{-N}^{N}e^{x}\,dx} II. Integral \oint_{C} x^3\, dx + 4y^2\, dy ∮ C x 3 d x + 4 y 2 d y {\displaystyle \oint _{C}x^{3}\,dx+4y^{2}\,dy} Mbylle Thyesat, matricat, formula e gjata Më shumë informacion , ... Për Shkruhet në Wikipedia Në Matematikë shkruhet si I.Thyesat \frac{2}{4} or {2 \over 4} 2 4 {\displaystyle {\frac {2}{4}}} II.Thyesat \begin{matrix} \frac{2}{4} \end{matrix} 2 4 {\displaystyle {\begin{matrix}{\frac {2}{4}}\end{matrix}}} Koeficienti binomialëËË {n \choose k} ( n k ) {\displaystyle {n \choose k}} Matrica \begin{matrix} x & y \\ z & v \end{matrix} x y z v < b r / > {\displaystyle {\begin{matrix}x&y\\z&v<br/>\end{matrix}}} \begin{vmatrix} x & y \\ z & v \end{vmatrix} | x y z v < b r / > | {\displaystyle {\begin{vmatrix}x&y\\z&v<br/>\end{vmatrix}}} \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} ‖ x y z v < b r / > ‖ {\displaystyle {\begin{Vmatrix}x&y\\z&v<br/>\end{Vmatrix}}} \begin{bmatrix} 0 & \cdots & 0 \\ \vdots &\ddots & \vdots \\ 0 & \cdots &0\end{bmatrix} [ 0 ⋯ 0 ⋮ < b r / > ⋱ ⋮ 0 ⋯ < b r / > 0 ] {\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots <br/>&\ddots &\vdots \\0&\cdots &<br/>0\end{bmatrix}}} \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} { x y z v < b r / > } {\displaystyle {\begin{Bmatrix}x&y\\z&v<br/>\end{Bmatrix}}} \begin{pmatrix} x & y \\ z & v \end{pmatrix} ( x y z v < b r / > ) {\displaystyle {\begin{pmatrix}x&y\\z&v<br/>\end{pmatrix}}} Funksonet me raste f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} f ( n ) = { n / 2 , if n is even 3 n + 1 , if n is odd {\displaystyle f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\\3n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}} I.Ekuacione komplekse \begin{matrix}f(n+1) & = & (n+1)^2 \\ \ &= & n^2 + 2n + 1 \end{matrix} f ( n + 1 ) = ( n + 1 ) 2 = n 2 + 2 n + 1 {\displaystyle {\begin{matrix}f(n+1)&=&(n+1)^{2}\\\ &=&n^{2}+2n+1\end{matrix}}} II.Ekuacione komplekse(tabela) {| |- | <math>(n+1)</math><br><math>=(n+1)^2</math> |- | <math>=n^2 + 2n + 1</math> |} |-| f ( n + 1 ) {\displaystyle f(n+1)\,\!} | = ( n + 1 ) 2 {\displaystyle =(n+1)^{2}\,\!} |-|| = n 2 + 2 n + 1 {\displaystyle =n^{2}+2n+1\,\!} |} Mbylle Simbolet shkronja dhe të ngjajshme Më shumë rrethë simboleve matematikore të greqishtës së vjeter shiko Numrat Grekë Më shumë informacion , ... Për shkronjat Shkruhet në Wikipedia Në Matematikë shkruhet si I. Greke \alpha \beta \gamma \Gamma \phi \Phi \Psi\ \tau \Omega α β γ Γ ϕ Φ Ψ τ Ω {\displaystyle \alpha \ \beta \ \gamma \ \Gamma \ \phi \ \Phi \ \Psi \ \tau \ \Omega } I. Latine x\in\mathbb{R}\sub\mathbb{C} x ∈ R ⊂ C {\displaystyle x\in \mathbb {R} \subset \mathbb {C} } II. Greke \boldsymbol{\alpha} + \boldsymbol{\beta} + \boldsymbol{\gamma} α + β + γ {\displaystyle {\boldsymbol {\alpha }}+{\boldsymbol {\beta }}+{\boldsymbol {\gamma }}} II. Latine \mathbf{x}\cdot\mathbf{y} = 0 x ⋅ y = 0 {\displaystyle \mathbf {x} \cdot \mathbf {y} =0} Mbylle Kllapat dhe llojet e tyre Më shumë informacion , ... Për Shkruhet në Wikipedia Në Matematikë shkruhet si Gabim ( \frac{1}{2} ) ( 1 2 ) {\displaystyle ({\frac {1}{2}})} Mirë \left ( \frac{1}{2} \right ) ( 1 2 ) {\displaystyle \left({\frac {1}{2}}\right)} Mbylle Më shumë informacion , ... Për kllapa të Shkruhet në Wikipedia Në Matematikë shkruhet si vogla \left ( A \right ) ( A ) {\displaystyle \left(A\right)} mesme \left [A \right] [ A ] {\displaystyle \left[A\right]} mëdha \left \{ A \right \} { A } {\displaystyle \left\{A\right\}} shigjetë \left \langle A \right \rangle ⟨ A ⟩ {\displaystyle \left\langle A\right\rangle } vleres absolute A \right | and \left \| B \right \| | A | a n d ‖ B ‖ {\displaystyle \left|A\right|and\left\|B\right\|} kombinuara [ 0 , 1 ) {\displaystyle \left[0,1\right)} ⟨ ψ | {\displaystyle \left\langle \psi \right|} e hapura, përdoreni \left. dhe \right nese nuk doni të mbyllni: \left . \frac{A}{B} \right \} \to X A B } → X {\displaystyle \left.{\frac {A}{B}}\right\}\to X} Mbylle Remove adsTabela e derivateve Më shumë informacion , ... Funksioni derivues Funksioni Funksioni Funksioni i rregullt¹ f ( x ) = 0 {\displaystyle f(x)=0\;} F ( x ) = C {\displaystyle F(x)=C\;} f ( x ) = k ( k ∈ R ) {\displaystyle f(x)=k\;(k\in \mathbb {R} )} F ( x ) = k x + C {\displaystyle F(x)=kx+C\;} f ( x ) = 1 {\displaystyle f(x)=1\;} F ( x ) = x + C {\displaystyle F(x)=x+C\;} f ( x ) = x {\displaystyle f(x)=x\;} F ( x ) = 1 2 x 2 + C {\displaystyle F(x)={\frac {1}{2}}x^{2}+C\;} f ( x ) = 2 x {\displaystyle f(x)=2x\;} F ( x ) = x 2 {\displaystyle F(x)=x^{2}\;} f ( x ) = x 2 {\displaystyle f(x)=x^{2}\;} F ( x ) = 1 3 x 3 {\displaystyle F(x)={\frac {1}{3}}x^{3}\;} f ( x ) = 3 x 2 {\displaystyle f(x)=3x^{2}\;} F ( x ) = x 3 {\displaystyle F(x)=x^{3}\;} f ( x ) = q x q − 1 ( q ∈ R ) {\displaystyle f(x)=qx^{q-1}\;(q\in \mathbb {R} )} F ( x ) = x q {\displaystyle F(x)=x^{q}\;} f ( x ) = x q {\displaystyle f(x)=x^{q}\;} F ( x ) = { x q + 1 q + 1 , wenn q ≠ − 1 ln | x | , wenn q = − 1 {\displaystyle F(x)=\left\{{\begin{matrix}{\frac {x^{q+1}}{q+1}},&{\mbox{wenn }}q\neq -1\\\ln |x|,&{\mbox{wenn }}q=-1\end{matrix}}\right.} f ( x ) = ∑ n = 0 N n k n x n − 1 {\displaystyle f(x)=\sum _{n=0}^{N}nk_{n}x^{n-1}\;} F ( x ) = ∑ n = 0 N k n x n {\displaystyle F(x)=\sum _{n=0}^{N}k_{n}x^{n}\;} f ( x ) = ∑ n = 0 N k n x n {\displaystyle f(x)=\sum _{n=0}^{N}k_{n}x^{n}\;} F ( x ) = ∑ n = 0 N k n n + 1 x n + 1 {\displaystyle F(x)=\sum _{n=0}^{N}{\frac {k_{n}}{n+1}}x^{n+1}\;} f ( x ) = e x {\displaystyle f(x)=e^{x}\;} F ( x ) = e x {\displaystyle F(x)=e^{x}\;} f ( x ) = e k x {\displaystyle f(x)=e^{kx}\;} F ( x ) = 1 k e k x {\displaystyle F(x)={\frac {1}{k}}e^{kx}\;} f ( x ) = a x ln a ( a > 0 ) {\displaystyle f(x)=a^{x}\ln a\;(a>0)} F ( x ) = a x {\displaystyle F(x)=a^{x}\;} f ( x ) = a x ( a > 0 ) {\displaystyle f(x)=a^{x}\;(a>0)} F ( x ) = a x ln a {\displaystyle F(x)={\frac {a^{x}}{\ln a}}\;} f ( x ) = − 2 x 3 {\displaystyle f(x)={\frac {-2}{x^{3}}}\;} F ( x ) = 1 x 2 {\displaystyle F(x)={\frac {1}{x^{2}}}\;} f ( x ) = − 1 x 2 {\displaystyle f(x)={\frac {-1}{x^{2}}}\;} F ( x ) = 1 x {\displaystyle F(x)={\frac {1}{x}}\;} f ( x ) = 1 x {\displaystyle f(x)={\frac {1}{x}}\;} F ( x ) = ln | x | {\displaystyle F(x)=\ln \left|x\right|\;} f ( x ) = ln x {\displaystyle f(x)=\ln x\;} F ( x ) = x ln x − x {\displaystyle F(x)=x\ln x-x\;} f ( x ) = 1 x 1 ln a ( a > 0 ) {\displaystyle f(x)={\frac {1}{x}}{\frac {1}{\ln a}}\;(a>0)} F ( x ) = log a x {\displaystyle F(x)=\log _{a}x\;} f ( x ) = log a x ( a > 0 ) {\displaystyle f(x)=\log _{a}x\;(a>0)} F ( x ) = 1 ln a ( x ln x − x ) {\displaystyle F(x)={\frac {1}{\ln a}}(x\ln x-x)\;} f ( x ) = sin x {\displaystyle f(x)=\sin x\;} F ( x ) = − cos x {\displaystyle F(x)=-\cos x\;} f ( x ) = cos x {\displaystyle f(x)=\cos x\;} F ( x ) = sin x {\displaystyle F(x)=\sin x\;} f ( x ) = tan x {\displaystyle f(x)=\tan x\;} F ( x ) = − ln | cos x | {\displaystyle F(x)=-\ln \left|\cos x\right|\;} f ( x ) = cot x {\displaystyle f(x)=\cot x\;} F ( x ) = ln | sin x | {\displaystyle F(x)=\ln \left|\sin x\right|\;} f ( x ) = 1 cos 2 x = 1 + tan 2 x {\displaystyle f(x)={\frac {1}{\cos ^{2}x}}=1+\tan ^{2}x\;} F ( x ) = tan x {\displaystyle F(x)=\tan x\;} f ( x ) = − 1 sin 2 x = − ( 1 + cot 2 x ) {\displaystyle f(x)={\frac {-1}{\sin ^{2}x}}=-(1+\cot ^{2}x)\;} F ( x ) = cot x {\displaystyle F(x)=\cot x\;} f ( x ) = arcsin x {\displaystyle f(x)=\arcsin x\;} F ( x ) = x arcsin x + 1 − x 2 {\displaystyle F(x)=x\;\arcsin x+{\sqrt {1-x^{2}}}\;} f ( x ) = arccos x {\displaystyle f(x)=\arccos x\;} F ( x ) = x arccos x − 1 − x 2 {\displaystyle F(x)=x\arccos \;x-{\sqrt {1-x^{2}}}\;} f ( x ) = arctan x {\displaystyle f(x)=\arctan x\;} F ( x ) = x arctan x − 1 2 ln ( 1 + x 2 ) {\displaystyle F(x)=x\arctan x-{\frac {1}{2}}\ln \left(1+x^{2}\right)\;} f ( x ) = 1 1 − x 2 {\displaystyle f(x)={\frac {1}{\sqrt {1-x^{2}}}}\;} F ( x ) = arcsin x {\displaystyle F(x)=\arcsin x\;} f ( x ) = − 1 1 − x 2 {\displaystyle f(x)={\frac {-1}{\sqrt {1-x^{2}}}}\;} F ( x ) = arccos x {\displaystyle F(x)=\arccos x\;} f ( x ) = 1 x 2 + 1 {\displaystyle f(x)={\frac {1}{x^{2}+1}}\;} F ( x ) = arctan x {\displaystyle F(x)=\arctan x\;} f ( x ) = 1 ( x 2 + 1 ) 2 {\displaystyle f(x)={\frac {1}{(x^{2}+1)^{2}}}\;} F ( x ) = 1 2 ( x x 2 + 1 + arctan x ) {\displaystyle F(x)={\frac {1}{2}}\left({\frac {x}{x^{2}+1}}+\arctan x\right)\;} f ( x ) = sinh x {\displaystyle f(x)=\sinh x\;} F ( x ) = cosh x {\displaystyle F(x)=\cosh x\;} f ( x ) = cosh x {\displaystyle f(x)=\cosh x\;} F ( x ) = sinh x {\displaystyle F(x)=\sinh x\;} f ( x ) = tanh x {\displaystyle f(x)=\tanh x\;} F ( x ) = ln | cosh x | {\displaystyle F(x)=\ln \left|\cosh x\right|\;} f ( x ) = coth x {\displaystyle f(x)=\coth x\;} F ( x ) = ln | sinh x | {\displaystyle F(x)=\ln \left|\sinh x\right|\;} f ( x ) = 1 cosh 2 x = 1 − tanh 2 x {\displaystyle f(x)={\frac {1}{\cosh ^{2}x}}=1-\tanh ^{2}x\;} F ( x ) = tanh x {\displaystyle F(x)=\tanh x\;} f ( x ) = − 1 sinh 2 x = 1 − coth 2 x {\displaystyle f(x)={\frac {-1}{\sinh ^{2}x}}=1-\coth ^{2}x\;} F ( x ) = coth x {\displaystyle F(x)=\coth x\;} f ( x ) = arsinh x {\displaystyle f(x)=\operatorname {arsinh} \;x\;} F ( x ) = x arsinh x − x 2 + 1 {\displaystyle F(x)=x\;\operatorname {arsinh} \;x-{\sqrt {x^{2}+1}}\;} f ( x ) = arcosh x {\displaystyle f(x)=\operatorname {arcosh} \;x\;} F ( x ) = x arcosh x − x 2 − 1 {\displaystyle F(x)=x\;\operatorname {arcosh} \;x-{\sqrt {x^{2}-1}}\;} f ( x ) = artanh x {\displaystyle f(x)=\operatorname {artanh} \;x\;} F ( x ) = x artanh x + 1 2 ln ( 1 − x 2 ) {\displaystyle F(x)=x\;\operatorname {artanh} \;x+{\frac {1}{2}}\ln {\left(1-x^{2}\right)}\;} f ( x ) = arcoth x {\displaystyle f(x)=\operatorname {arcoth} \;x\;} F ( x ) = x arcoth x + 1 2 ln ( x 2 − 1 ) {\displaystyle F(x)=x\;\operatorname {arcoth} \;x+{\frac {1}{2}}\ln {\left(x^{2}-1\right)}\;} f ( x ) = 1 x 2 + 1 {\displaystyle f(x)={\frac {1}{\sqrt {x^{2}+1}}}\;} F ( x ) = arsinh x {\displaystyle F(x)=\operatorname {arsinh} \;x\;} f ( x ) = 1 x 2 − 1 , x > 1 {\displaystyle f(x)={\frac {1}{\sqrt {x^{2}-1}}}\;,\;x>1} F ( x ) = arcosh x {\displaystyle F(x)=\operatorname {arcosh} \;x\;} f ( x ) = 1 1 − x 2 , | x | < 1 {\displaystyle f(x)={\frac {1}{1-x^{2}}}\;,\;\left|x\right|<1} F ( x ) = artanh x {\displaystyle F(x)=\operatorname {artanh} \;x\;} f ( x ) = 1 1 − x 2 , | x | > 1 {\displaystyle f(x)={\frac {1}{1-x^{2}}}\;,\;\left|x\right|>1} F ( x ) = arcoth x {\displaystyle F(x)=\operatorname {arcoth} \;x\;} Mbylle Remove adsTabela e derivateve Më shumë informacion , ... Ableitungsfunktion Funktion Funktion Stammfunktion¹ f ( x ) = 0 {\displaystyle f(x)=0\;} F ( x ) = C {\displaystyle F(x)=C\;} f ( x ) = k ( k ∈ R ) {\displaystyle f(x)=k\;(k\in \mathbb {R} )} F ( x ) = k x + C {\displaystyle F(x)=kx+C\;} f ( x ) = 1 {\displaystyle f(x)=1\;} F ( x ) = x + C {\displaystyle F(x)=x+C\;} f ( x ) = x {\displaystyle f(x)=x\;} F ( x ) = 1 2 x 2 + C {\displaystyle F(x)={\frac {1}{2}}x^{2}+C\;} f ( x ) = 2 x {\displaystyle f(x)=2x\;} F ( x ) = x 2 {\displaystyle F(x)=x^{2}\;} f ( x ) = x 2 {\displaystyle f(x)=x^{2}\;} F ( x ) = 1 3 x 3 {\displaystyle F(x)={\frac {1}{3}}x^{3}\;} f ( x ) = 3 x 2 {\displaystyle f(x)=3x^{2}\;} F ( x ) = x 3 {\displaystyle F(x)=x^{3}\;} f ( x ) = q x q − 1 ( q ∈ R ) {\displaystyle f(x)=qx^{q-1}\;(q\in \mathbb {R} )} F ( x ) = x q {\displaystyle F(x)=x^{q}\;} f ( x ) = x q {\displaystyle f(x)=x^{q}\;} F ( x ) = { x q + 1 q + 1 , wenn q ≠ − 1 ln | x | , wenn q = − 1 {\displaystyle F(x)=\left\{{\begin{matrix}{\frac {x^{q+1}}{q+1}},&{\mbox{wenn }}q\neq -1\\\ln |x|,&{\mbox{wenn }}q=-1\end{matrix}}\right.} f ( x ) = ∑ n = 0 N n k n x n − 1 {\displaystyle f(x)=\sum _{n=0}^{N}nk_{n}x^{n-1}\;} F ( x ) = ∑ n = 0 N k n x n {\displaystyle F(x)=\sum _{n=0}^{N}k_{n}x^{n}\;} f ( x ) = ∑ n = 0 N k n x n {\displaystyle f(x)=\sum _{n=0}^{N}k_{n}x^{n}\;} F ( x ) = ∑ n = 0 N k n n + 1 x n + 1 {\displaystyle F(x)=\sum _{n=0}^{N}{\frac {k_{n}}{n+1}}x^{n+1}\;} f ( x ) = e x {\displaystyle f(x)=e^{x}\;} F ( x ) = e x {\displaystyle F(x)=e^{x}\;} f ( x ) = e k x {\displaystyle f(x)=e^{kx}\;} F ( x ) = 1 k e k x {\displaystyle F(x)={\frac {1}{k}}e^{kx}\;} f ( x ) = a x ln a ( a > 0 ) {\displaystyle f(x)=a^{x}\ln a\;(a>0)} F ( x ) = a x {\displaystyle F(x)=a^{x}\;} f ( x ) = a x ( a > 0 ) {\displaystyle f(x)=a^{x}\;(a>0)} F ( x ) = a x ln a {\displaystyle F(x)={\frac {a^{x}}{\ln a}}\;} f ( x ) = − 2 x 3 {\displaystyle f(x)={\frac {-2}{x^{3}}}\;} F ( x ) = 1 x 2 {\displaystyle F(x)={\frac {1}{x^{2}}}\;} f ( x ) = − 1 x 2 {\displaystyle f(x)={\frac {-1}{x^{2}}}\;} F ( x ) = 1 x {\displaystyle F(x)={\frac {1}{x}}\;} f ( x ) = 1 x {\displaystyle f(x)={\frac {1}{x}}\;} F ( x ) = ln | x | {\displaystyle F(x)=\ln \left|x\right|\;} f ( x ) = ln x {\displaystyle f(x)=\ln x\;} F ( x ) = x ln x − x {\displaystyle F(x)=x\ln x-x\;} f ( x ) = 1 x 1 ln a ( a > 0 ) {\displaystyle f(x)={\frac {1}{x}}{\frac {1}{\ln a}}\;(a>0)} F ( x ) = log a x {\displaystyle F(x)=\log _{a}x\;} f ( x ) = log a x ( a > 0 ) {\displaystyle f(x)=\log _{a}x\;(a>0)} F ( x ) = 1 ln a ( x ln x − x ) {\displaystyle F(x)={\frac {1}{\ln a}}(x\ln x-x)\;} f ( x ) = sin x {\displaystyle f(x)=\sin x\;} F ( x ) = − cos x {\displaystyle F(x)=-\cos x\;} f ( x ) = cos x {\displaystyle f(x)=\cos x\;} F ( x ) = sin x {\displaystyle F(x)=\sin x\;} f ( x ) = tan x {\displaystyle f(x)=\tan x\;} F ( x ) = − ln | cos x | {\displaystyle F(x)=-\ln \left|\cos x\right|\;} f ( x ) = cot x {\displaystyle f(x)=\cot x\;} F ( x ) = ln | sin x | {\displaystyle F(x)=\ln \left|\sin x\right|\;} f ( x ) = 1 cos 2 x = 1 + tan 2 x {\displaystyle f(x)={\frac {1}{\cos ^{2}x}}=1+\tan ^{2}x\;} F ( x ) = tan x {\displaystyle F(x)=\tan x\;} f ( x ) = − 1 sin 2 x = − ( 1 + cot 2 x ) {\displaystyle f(x)={\frac {-1}{\sin ^{2}x}}=-(1+\cot ^{2}x)\;} F ( x ) = cot x {\displaystyle F(x)=\cot x\;} f ( x ) = arcsin x {\displaystyle f(x)=\arcsin x\;} F ( x ) = x arcsin x + 1 − x 2 {\displaystyle F(x)=x\;\arcsin x+{\sqrt {1-x^{2}}}\;} f ( x ) = arccos x {\displaystyle f(x)=\arccos x\;} F ( x ) = x arccos x − 1 − x 2 {\displaystyle F(x)=x\arccos \;x-{\sqrt {1-x^{2}}}\;} f ( x ) = arctan x {\displaystyle f(x)=\arctan x\;} F ( x ) = x arctan x − 1 2 ln ( 1 + x 2 ) {\displaystyle F(x)=x\arctan x-{\frac {1}{2}}\ln \left(1+x^{2}\right)\;} f ( x ) = 1 1 − x 2 {\displaystyle f(x)={\frac {1}{\sqrt {1-x^{2}}}}\;} F ( x ) = arcsin x {\displaystyle F(x)=\arcsin x\;} f ( x ) = − 1 1 − x 2 {\displaystyle f(x)={\frac {-1}{\sqrt {1-x^{2}}}}\;} F ( x ) = arccos x {\displaystyle F(x)=\arccos x\;} f ( x ) = 1 x 2 + 1 {\displaystyle f(x)={\frac {1}{x^{2}+1}}\;} F ( x ) = arctan x {\displaystyle F(x)=\arctan x\;} f ( x ) = 1 ( x 2 + 1 ) 2 {\displaystyle f(x)={\frac {1}{(x^{2}+1)^{2}}}\;} F ( x ) = 1 2 ( x x 2 + 1 + arctan x ) {\displaystyle F(x)={\frac {1}{2}}\left({\frac {x}{x^{2}+1}}+\arctan x\right)\;} f ( x ) = sinh x {\displaystyle f(x)=\sinh x\;} F ( x ) = cosh x {\displaystyle F(x)=\cosh x\;} f ( x ) = cosh x {\displaystyle f(x)=\cosh x\;} F ( x ) = sinh x {\displaystyle F(x)=\sinh x\;} f ( x ) = tanh x {\displaystyle f(x)=\tanh x\;} F ( x ) = ln | cosh x | {\displaystyle F(x)=\ln \left|\cosh x\right|\;} f ( x ) = coth x {\displaystyle f(x)=\coth x\;} F ( x ) = ln | sinh x | {\displaystyle F(x)=\ln \left|\sinh x\right|\;} f ( x ) = 1 cosh 2 x = 1 − tanh 2 x {\displaystyle f(x)={\frac {1}{\cosh ^{2}x}}=1-\tanh ^{2}x\;} F ( x ) = tanh x {\displaystyle F(x)=\tanh x\;} f ( x ) = − 1 sinh 2 x = 1 − coth 2 x {\displaystyle f(x)={\frac {-1}{\sinh ^{2}x}}=1-\coth ^{2}x\;} F ( x ) = coth x {\displaystyle F(x)=\coth x\;} f ( x ) = arsinh x {\displaystyle f(x)=\operatorname {arsinh} \;x\;} F ( x ) = x arsinh x − x 2 + 1 {\displaystyle F(x)=x\;\operatorname {arsinh} \;x-{\sqrt {x^{2}+1}}\;} f ( x ) = arcosh x {\displaystyle f(x)=\operatorname {arcosh} \;x\;} F ( x ) = x arcosh x − x 2 − 1 {\displaystyle F(x)=x\;\operatorname {arcosh} \;x-{\sqrt {x^{2}-1}}\;} f ( x ) = artanh x {\displaystyle f(x)=\operatorname {artanh} \;x\;} F ( x ) = x artanh x + 1 2 ln ( 1 − x 2 ) {\displaystyle F(x)=x\;\operatorname {artanh} \;x+{\frac {1}{2}}\ln {\left(1-x^{2}\right)}\;} f ( x ) = arcoth x {\displaystyle f(x)=\operatorname {arcoth} \;x\;} F ( x ) = x arcoth x + 1 2 ln ( x 2 − 1 ) {\displaystyle F(x)=x\;\operatorname {arcoth} \;x+{\frac {1}{2}}\ln {\left(x^{2}-1\right)}\;} f ( x ) = 1 x 2 + 1 {\displaystyle f(x)={\frac {1}{\sqrt {x^{2}+1}}}\;} F ( x ) = arsinh x {\displaystyle F(x)=\operatorname {arsinh} \;x\;} f ( x ) = 1 x 2 − 1 , x > 1 {\displaystyle f(x)={\frac {1}{\sqrt {x^{2}-1}}}\;,\;x>1} F ( x ) = arcosh x {\displaystyle F(x)=\operatorname {arcosh} \;x\;} f ( x ) = 1 1 − x 2 , | x | < 1 {\displaystyle f(x)={\frac {1}{1-x^{2}}}\;,\;\left|x\right|<1} F ( x ) = artanh x {\displaystyle F(x)=\operatorname {artanh} \;x\;} f ( x ) = 1 1 − x 2 , | x | > 1 {\displaystyle f(x)={\frac {1}{1-x^{2}}}\;,\;\left|x\right|>1} F ( x ) = arcoth x {\displaystyle F(x)=\operatorname {arcoth} \;x\;} Mbylle Për ndihmë më detalishtë gjeni në anglisht Ndihmë rreth formulava Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads