Дирихлеова функција
From Wikipedia, the free encyclopedia
Remove ads
Дирихлеова функција добила је назив по немачком математичару Јохану Дирихлеу. Немац Карл Тома ју је модификао у Томаову функцију.

Remove ads
Дефиниција
Дирихлеова функција је функција реалне променљиве дефинисана као:
односно функција чији домен чине сви реални бројеви, а кодомен само бројеви 0 и 1. Ова функција је дефинисана тако да за све рационалне бројеве узима вредност 1, а за све ирационалне бројеве узима вредност 0.
Од саме Дирихлеове функције, интересантнија је (поготово графички) њена модификована верзија, која се назива Томаова функција. Овако предефинисана функција гласи:
Remove ads
Прекидност
Из Кошијевог критеријума конвергенције за функције, може се лако показати да током целог њеног домена постоје бројеви x и y такви да важи |x − y| < δ and |f(x) − f(y)| ≥ ε, односно функција је ненепрекидна, тј. прекидна је у свакој тачки свог домена.
Периодичност
Дирихлеова функција је периодична, али нема основни период.
Литература
- Душан Аднађевић, Зоран Каделбург: Математичка анализа 1, Студентски трг, Београд, 1995.
Види још
- Томаова функција
- Функција
- Прекидност
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads