Списак интеграла логаритамских функција: x>0 вреди за све интеграле у овом чланку. ∫ ln c x d x = x ln c x − x {\displaystyle \int \ln cx\,dx=x\ln cx-x} ∫ ( ln x ) 2 d x = x ( ln x ) 2 − 2 x ln x + 2 x {\displaystyle \int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x} ∫ ( ln c x ) n d x = x ( ln c x ) n − n ∫ ( ln c x ) n − 1 d x (for n ≠ 1 ) {\displaystyle \int (\ln cx)^{n}\;dx=x(\ln cx)^{n}-n\int (\ln cx)^{n-1}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x ln x = ln | ln x | + ln x + ∑ i = 2 ∞ ( ln x ) i i ⋅ i ! {\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{i=2}^{\infty }{\frac {(\ln x)^{i}}{i\cdot i!}}} ∫ d x ( ln x ) n = − x ( n − 1 ) ( ln x ) n − 1 + 1 n − 1 ∫ d x ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ x m ln x d x = x m + 1 ( ln x m + 1 − 1 ( m + 1 ) 2 ) (for m ≠ 1 ) {\displaystyle \int x^{m}\ln x\;dx=x^{m+1}\left({\frac {\ln x}{m+1}}\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ x m ( ln x ) n d x = x m + 1 ( ln x ) n m + 1 − n m + 1 ∫ x m ( ln x ) n − 1 d x (for m , n ≠ 1 ) {\displaystyle \int x^{m}(\ln x)^{n}\;dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m,n\neq 1{\mbox{)}}} ∫ ( ln x ) n d x x = ( ln x ) n + 1 n + 1 (for n ≠ 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ ln x d x x m = − ln x ( m − 1 ) x m − 1 − 1 ( m − 1 ) 2 x m − 1 (for m ≠ 1 ) {\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=\frac {\ln x}{(m-1)x^{m-1}}{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ ( ln x ) n d x x m = − ( ln x ) n ( m − 1 ) x m − 1 + n m − 1 ∫ ( ln x ) n − 1 d x x m (for m , n ≠ 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m,n\neq 1{\mbox{)}}} ∫ x m d x ( ln x ) n = − x m + 1 ( n − 1 ) ( ln x ) n − 1 + m + 1 n − 1 ∫ x m d x ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {x^{m}\;dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x x ln x = ln | ln x | {\displaystyle \int {\frac {dx}{x\ln x}}=\ln |\ln x|} ∫ d x x n ln x = ln | ln x | + ∑ i = 1 ∞ ( − 1 ) i ( n − 1 ) i ( ln x ) i i ⋅ i ! {\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln |\ln x|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(n-1)^{i}(\ln x)^{i}}{i\cdot i!}}} ∫ d x x ( ln x ) n = − 1 ( n − 1 ) ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ sin ( ln x ) d x = x 2 ( sin ( ln x ) − cos ( ln x ) ) {\displaystyle \int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))} ∫ cos ( ln x ) d x = x 2 ( sin ( ln x ) + cos ( ln x ) ) {\displaystyle \int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))} Remove adsЛитература title= (помоћ). Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003. Yu.A. Brychkov (Ю. А. Брычков). Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition. . Chapman & Hall/CRC Press. 2008. ISBN 978-1-58488-956-4. Недостаје или је празан параметар |title= (помоћ). Zwillinger, Daniel (2002). CRC Standard Mathematical Tables and Formulae. 31st edition. Chapman & Hall/CRC Press. ISBN 978-1-58488-291-6.. (Many earlier editions as well.) Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln] Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899) Списак интеграла логаритамских функција на сродним пројектима Википедије:Подаци на Википодацима Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads