Списак интеграла рационалних функција: ∫ ( a x + b ) n d x = ( a x + b ) n + 1 a ( n + 1 ) (for n ≠ − 1 ) {\displaystyle \int (ax+b)^{n}dx={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!} ∫ d x a x + b = 1 a ln | a x + b | {\displaystyle \int {\frac {dx}{ax+b}}={\frac {1}{a}}\ln \left|ax+b\right|} ∫ x ( a x + b ) n d x = a ( n + 1 ) x − b a 2 ( n + 1 ) ( n + 2 ) ( a x + b ) n + 1 (for n ∉ { − 1 , − 2 } ) {\displaystyle \int x(ax+b)^{n}dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(for }}n\not \in \{-1,-2\}{\mbox{)}}} ∫ x d x a x + b = x a − b a 2 ln | a x + b | {\displaystyle \int {\frac {x\;dx}{ax+b}}={\frac {x}{a}}ax+b\right|} ∫ x d x ( a x + b ) 2 = b a 2 ( a x + b ) + 1 a 2 ln | a x + b | {\displaystyle \int {\frac {x\;dx}{(ax+b)^{2}}}={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|} ∫ x d x ( a x + b ) n = a ( 1 − n ) x − b a 2 ( n − 1 ) ( n − 2 ) ( a x + b ) n − 1 (for n ∉ { − 1 , − 2 } ) {\displaystyle \int {\frac {x\;dx}{(ax+b)^{n}}}={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(for }}n\not \in \{-1,-2\}{\mbox{)}}} ∫ x 2 d x a x + b = 1 a 3 ( ( a x + b ) 2 2 − 2 b ( a x + b ) + b 2 ln | a x + b | ) {\displaystyle \int {\frac {x^{2}\;dx}{ax+b}}={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)} ∫ x 2 d x ( a x + b ) 2 = 1 a 3 ( a x + b − 2 b ln | a x + b | − b 2 a x + b ) {\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{2}}}={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|ax+b\right|ax + b\\right| + \\frac{2b}{ax + b} - \\frac{b^2}{2(ax + b)^2}\\right)"}}' id="mwIA"> ∫ x 2 d x ( a x + b ) 3 = 1 a 3 ( ln | a x + b | + 2 b a x + b − b 2 2 ( a x + b ) 2 ) {\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{3}}}={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}{\frac {b^{2}}{2(ax+b)^{2}}}\right)} ∫ x 2 d x ( a x + b ) n = 1 a 3 ( − 1 ( n − 3 ) ( a x + b ) n − 3 + 2 b ( n − 2 ) ( a + b ) n − 2 − b 2 ( n − 1 ) ( a x + b ) n − 1 ) (for n ∉ { 1 , 2 , 3 } ) {\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{n}}}={\frac {1}{a^{3}}}\left(\frac {1}{(n-3)(ax+b)^{n-3}}}+{\frac {2b}{(n-2)(a+b)^{n-2}}{\frac {b^{2}}{(n-1)(ax+b)^{n-1}}}\right)\qquad {\mbox{(for }}n\not \in \{1,2,3\}{\mbox{)}}} ∫ d x x ( a x + b ) = − 1 b ln | a x + b x | {\displaystyle \int {\frac {dx}{x(ax+b)}}={\frac {ax+b}{x}}\right|} ∫ d x x 2 ( a x + b ) = − 1 b x + a b 2 ln | a x + b x | {\displaystyle \int {\frac {dx}{x^{2}(ax+b)}}={\frac {ax+b}{x}}\right|} ∫ d x x 2 ( a x + b ) 2 = − a ( 1 b 2 ( a x + b ) + 1 a b 2 x − 2 b 3 ln | a x + b x | ) {\displaystyle \int {\frac {dx}{x^{2}(ax+b)^{2}}}=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)} ∫ d x x 2 + a 2 = 1 a arctan x a {\displaystyle \int {\frac {dx}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!} ∫ d x x 2 − a 2 = − 1 a a r t a n h x a = 1 2 a ln a − x a + x (for | x | < | a | ) {\displaystyle \int {\frac {dx}{x^{2a^{2}}}=x|<|a|{\mbox{)}}\,\!} ∫ d x x 2 − a 2 = − 1 a a r c o t h x a = 1 2 a ln x − a x + a (for | x | > | a | ) {\displaystyle \int {\frac {dx}{x^{2a^{2}}}=x|>|a|{\mbox{)}}\,\!} ∫ d x a x 2 + b x + c = 2 4 a c − b 2 arctan 2 a x + b 4 a c − b 2 (for 4 a c − b 2 > 0 ) {\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}} ∫ d x a x 2 + b x + c = 2 b 2 − 4 a c a r t a n h 2 a x + b b 2 − 4 a c = 1 b 2 − 4 a c ln | 2 a x + b − b 2 − 4 a c 2 a x + b + b 2 − 4 a c | (for 4 a c − b 2 < 0 ) {\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b\sqrt {b^{24ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}} ∫ x d x a x 2 + b x + c = 1 2 a ln | a x 2 + b x + c | − b 2 a ∫ d x a x 2 + b x + c {\displaystyle \int {\frac {x\;dx}{ax^{2}+bx+c}}={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|ax^{2}+bx+c\right|ax^2+bx+c\\right|+\\frac{2an-bm}{a\\sqrt{4ac-b^2}}\\arctan\\frac{2ax+b}{\\sqrt{4ac-b^2}} \\qquad\\mbox{(for }4ac-b^2>0\\mbox{)}"}}' id="mwQQ"> ∫ m x + n a x 2 + b x + c d x = m 2 a ln | a x 2 + b x + c | + 2 a n − b m a 4 a c − b 2 arctan 2 a x + b 4 a c − b 2 (for 4 a c − b 2 > 0 ) {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}} ∫ m x + n a x 2 + b x + c d x = m 2 a ln | a x 2 + b x + c | + 2 a n − b m a b 2 − 4 a c a r t a n h 2 a x + b b 2 − 4 a c (for 4 a c − b 2 < 0 ) {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}} ∫ d x ( a x 2 + b x + c ) n = 2 a x + b ( n − 1 ) ( 4 a c − b 2 ) ( a x 2 + b x + c ) n − 1 + ( 2 n − 3 ) 2 a ( n − 1 ) ( 4 a c − b 2 ) ∫ d x ( a x 2 + b x + c ) n − 1 {\displaystyle \int {\frac {dx}{(ax^{2}+bx+c)^{n}}}={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}\,\!} ∫ x d x ( a x 2 + b x + c ) n = b x + 2 c ( n − 1 ) ( 4 a c − b 2 ) ( a x 2 + b x + c ) n − 1 − b ( 2 n − 3 ) ( n − 1 ) ( 4 a c − b 2 ) ∫ d x ( a x 2 + b x + c ) n − 1 {\displaystyle \int {\frac {x\;dx}{(ax^{2}+bx+c)^{n}}}={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}\,\!} ∫ d x x ( a x 2 + b x + c ) = 1 2 c ln | x 2 a x 2 + b x + c | − b 2 c ∫ d x a x 2 + b x + c {\displaystyle \int {\frac {dx}{x(ax^{2}+bx+c)}}={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {dx}{ax^{2}+bx+c}}} Remove adsЛитература title= (помоћ). Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003. Yu.A. Brychkov (Ю. А. Брычков). Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition. . Chapman & Hall/CRC Press. 2008. ISBN 978-1-58488-956-4. Недостаје или је празан параметар |title= (помоћ) Zwillinger, Daniel (2002). CRC Standard Mathematical Tables and Formulae. 31st edition. Chapman & Hall/CRC Press. ISBN 978-1-58488-291-6.. (Many earlier editions as well.) Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln] Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899) Списак интеграла рационалних функција на сродним пројектима Википедије:Подаци на Википодацима Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads