Списак интеграла хиперболичких функција: ∫ sinh c x d x = 1 c cosh c x {\displaystyle \int \sinh cx\,dx={\frac {1}{c}}\cosh cx} ∫ cosh c x d x = 1 c sinh c x {\displaystyle \int \cosh cx\,dx={\frac {1}{c}}\sinh cx} ∫ sinh 2 c x d x = 1 4 c sinh 2 c x − x 2 {\displaystyle \int \sinh ^{2}cx\,dx={\frac {1}{4c}}\sinh 2cx-{\frac {x}{2}}} такође: ∫ d x sinh c x = 1 c ln | cosh c x − 1 sinh c x | {\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\sinh cx}}\right|} такође: ∫ d x sinh c x = 1 c ln | sinh c x cosh c x + 1 | {\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\sinh cx}{\cosh cx+1}}\right|} такође: ∫ d x sinh c x = 1 c ln | cosh c x − 1 cosh c x + 1 | {\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\cosh cx+1}}\right|} ∫ d x cosh c x = 2 c arctan e c x {\displaystyle \int {\frac {dx}{\cosh cx}}={\frac {2}{c}}\arctan e^{cx}} ∫ d x sinh n c x = cosh c x c ( n − 1 ) sinh n − 1 c x − n − 2 n − 1 ∫ d x sinh n − 2 c x (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{\sinh ^{n}cx}}={\frac {\cosh cx}{c(n-1)\sinh ^{n-1}cx}{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x cosh n c x = sinh c x c ( n − 1 ) cosh n − 1 c x + n − 2 n − 1 ∫ d x cosh n − 2 c x (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{\cosh ^{n}cx}}={\frac {\sinh cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ cosh n c x sinh m c x d x = cosh n − 1 c x c ( n − m ) sinh m − 1 c x + n − 1 n − m ∫ cosh n − 2 c x sinh m c x d x (for m ≠ n ) {\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx={\frac {\cosh ^{n-1}cx}{c(n-m)\sinh ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m}cx}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}} такође: ∫ tanh c x d x = 1 c ln | cosh c x | {\displaystyle \int \tanh cx\,dx={\frac {1}{c}}\ln |\cosh cx|} ∫ coth c x d x = 1 c ln | sinh c x | {\displaystyle \int \coth cx\,dx={\frac {1}{c}}\ln |\sinh cx|} ∫ tanh n c x d x = − 1 c ( n − 1 ) tanh n − 1 c x + ∫ tanh n − 2 c x d x (for n ≠ 1 ) {\displaystyle \int \tanh ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\tanh ^{n-1}cx+\int \tanh ^{n-2}cx\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ coth n c x d x = − 1 c ( n − 1 ) coth n − 1 c x + ∫ coth n − 2 c x d x (for n ≠ 1 ) {\displaystyle \int \coth ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\coth ^{n-1}cx+\int \coth ^{n-2}cx\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ sinh b x sinh c x d x = 1 b 2 − c 2 ( b sinh c x cosh b x − c cosh c x sinh b x ) (for b 2 ≠ c 2 ) {\displaystyle \int \sinh bx\sinh cx\,dx={\frac {1}{b^{2c^{2}}}(b\sinh cx\cosh bx-c\cosh cx\sinh bx)\qquad {\mbox{(for }}b^{2}\neq c^{2}{\mbox{)}}} ∫ cosh b x cosh c x d x = 1 b 2 − c 2 ( b sinh b x cosh c x − c sinh c x cosh b x ) (for b 2 ≠ c 2 ) {\displaystyle \int \cosh bx\cosh cx\,dx={\frac {1}{b^{2c^{2}}}(b\sinh bx\cosh cx-c\sinh cx\cosh bx)\qquad {\mbox{(for }}b^{2}\neq c^{2}{\mbox{)}}} ∫ cosh b x sinh c x d x = 1 b 2 − c 2 ( b sinh b x sinh c x − c cosh b x cosh c x ) (for b 2 ≠ c 2 ) {\displaystyle \int \cosh bx\sinh cx\,dx={\frac {1}{b^{2c^{2}}}(b\sinh bx\sinh cx-c\cosh bx\cosh cx)\qquad {\mbox{(for }}b^{2}\neq c^{2}{\mbox{)}}} ∫ sinh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) − c a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)} ∫ sinh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)} ∫ cosh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) − c a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)} ∫ cosh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)} Remove adsЛитература Milton Abramowitz and Irene Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. I.S. Gradshteyn (И. С. Градштейн), I.M. Ryzhik (И. М. Рыжик); Alan Jeffrey, Daniel Zwillinger, ур. (2007). Table of Integrals, Series, and Products. seventh edition. Academic Press. ISBN 978-0-12-373637-6.CS1 одржавање: Вишеструка имена: списак уредника (веза). Errata. (Several previous editions as well.) A.P. Prudnikov (А. П. Прудников), Yu.A. Brychkov (Ю. А. Брычков), O.I. Marichev (О. И. Маричев). Integrals and Series. First edition (Russian), volume 1–5, Nauka, 1981−1986. First edition (English, translated from the Russian by N.M. Queen), volume 1–5, Gordon & Breach Science Publishers/CRC Press, 1988–1992. 978-2-88124-097-3.. Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003. Yu.A. Brychkov (Ю. А. Брычков). Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition. . Zwillinger, Daniel (2002). CRC Standard Mathematical Tables and Formulae. 31st edition. Chapman & Hall/CRC Press. ISBN 978-1-58488-291-6.. (Many earlier editions as well.) Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln] Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899) Списак интеграла хиперболичких функција на сродним пројектима Википедије:Подаци на Википодацима Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads