Теорија категорија

From Wikipedia, the free encyclopedia

Теорија категорија
Remove ads

Теорија категорија се користи да формализује математику и њене концепте као колекције објеката и стрелица (морфизама).[1] Теорија категорија може да се користи да формализује већ постојеће теорије на вишем нивоу апстракције као што су теорија скупова, теорија прстена и теорија група. Неколико термина који се користе у теорији категорија, укључујући термин "морфизам", има различито значење у осталим областима математике.

Thumb
Категорија са објектима X, Y, Z и морфизмима f, g, gf, и три идентичка морфизма (нису приказани) 1X, 1Y and 1Z.

Објекти заједнице су дати објектима који су врхови графа, а њихови односи су означени усмереним бридовима, који се називају стрелицама или морфизмима. Свака категорија по дефиницији уз објекте и њихове усмерене односа представљене морфизмима имају задато асоцијативно пресликавање композиције оних парова стрелица које графички следе у низу (крај једне је почетак друге) и за сваки објект је изабрана посебна стрелица идентитета, којој је и почетак и крај на том објекту. На пример, категоријама се може формализовати заједница свих скупова и њихових пресликавања као односа, заједницу свих прстенова и њихових (хомо)морфизама и заједницу свих група и (хомо)морфизама група. У тим примерима се види да заједница може бити велика, тј. да чини класу у смислу теорије скупова.

Неколика термина кориштених у теорији категорија, укључујући термин „морфизам” се користе другачије него у специјализованим ситуацијама у математици. У теорији категорија, морфизми морају испуњавати само опште аксиоме из теорије категорија, а не специфичне аксиоме који се захтевају у неком другом контексту. Дакле, тај концепт је унутрашњи у заданој категорији.

Саундерс Маклејн и Самјуел Ејленберг су увели концепте категорија, функтора и природних трансформација у 1942-45 у њиховом проучавању алгебарске топологије, са циљем аксиоматизације појма природности и још неких својстава која су се понављала у више контекста.

Категорија теорија има практичну примену у теорији програмских језика, нпр. формализације семантике програмских језика и кориштење монада у функцијском програмирању. Аксиоматски приступ структури категорије (елементарна теорија категорија) није зависан од аксиоматике скупова и може се изучавати као један од алтернативних приступа темељима математике (уз теорију скупова, разне теорије типова итд).

Remove ads

Категорије

Категорија C се састоји од следећа три ентитета:

  • Класе ob(C), чије елементе зовемо објекти;
  • Класе hom(C), чије елементе зовемо морфизми или пресликавања или стрелице. Сваки морфизам f има свој домен a и кодомен b.

Израз f : ab, се чита као "f је морфизам из a у b".
Израз hom(a, b) — користе се и ознаке homC(a, b), mor(a, b), или C(a, b) — означава класу свих морфизама изa у b.

  • Бинарне операције ∘, коју називамо композиција морфизама, тако да за било која три објекта a, b, и c, важи hom(b, c) × hom(a, b) → hom(a, c). Композицију f : ab и g : bc записујемо gf или gf, регулисана са две аксиоме:
    • Асоцијативност: Ако f : ab, g : bc и h : cd онда је h ∘ (gf) = (hg) ∘ f, и
    • Идентитет (математика): За сваки објект x, постоји морфизам 1x : xx звани идентички морфизам x, тако да за сваки морфизам f : ab, важи 1bf = f = f ∘ 1a.
Из аксиома се може доказати да постоји тачно један идентички морфизам за сваки објект. Неки аутори одступају од ове дефиниције идентификујући сваки објект са његовим идентичким морфизмом.
Remove ads

Односи међу морфизмима и типови морфизама

Релације између морфизама (попут fg = h) често се приказују графички помоћу комутативних дијаграма, са „тачкама” (врховима) представљајући објекте и „стрелицама” представљајући морфизме. Комутативност дијаграма означава да композиција свих морфизама уздуж било која два усмерена пута с међусобно истим почетком и међусобно истим крајем има исти резултат (не yависи од пута).

Морфизми могу имати било која од седећих својстава. Морфизам f : ab је:

  • мономорфизам (генерализирајући појам инјекције у категорији скупова) ако fg1 = fg2 повлачи g1 = g2 за све морфизме g1, g2 : xa.
  • епиморфизам (генерализирајући појам сурјекције у категорији скупова) ако g1f = g2f повлачи g1 = g2 за све морфизме g1, g2 : bx.
  • биморфизам ако је истовремено мономорфизам и епиморфизам.
  • изоморфизам ако постоји морфизам g : ba такав да је fg = 1b and gf = 1a.
  • ендоморфизам ако је домен уједно и кодомен, a = b. end(a) означава класу ендоморфизама од a.
  • аутоморфизам ако је изоморфизам с истом доменом и кодоменом. aut(a) означава класу ендоморфизама од a.
  • ретракција (сажимање) ако десна инверзија од постоји, т.ј. ако постоји морфизам g : ba такав да fg = 1b.[2]
  • пререз (секција) ако лева инверзија од постоји, т.ј. ако постоји морфизам g : ba такав да gf = 1a.

За категорију се каже да је балансирана ако је сваки биморфизам изоморфизам. На пример, све су Абелове категорије балансиране.

Свака ретракција је епиморфизам, и сваку пререз је мономорфизам. Надаље, следеће три тврдње су еквивалентне:

  • је мономорфизам и ретракција;
  • је епиморфизам и пререз;
  • је изоморфизам.

Супротна категорија

Свакој категорији може се придружити супротна категорија која има исте објекте и морфизме, но морфизми иду у супротни смер. Тако за сваки објект има своју супротну копију , а за морфизам његову супротну копију са замењеном доменом и кодоменом; при томе је композиција дефинисана с , а идентитет с . Супротна категорија се назива такође двојствена или дуална категорија категорије .

Remove ads

Види још

Референце

Литература

Спољашње везе

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads