Transformasi Fourier
From Wikipedia, the free encyclopedia
Remove ads
Transformasi Fourier nyéta hiji alat matematis anu ngawincik fungsi non-périodik kana fungsi-fungsi sinusoida anu nyusunna. Tranformasi Fourier ogé mangrupa alat pikeun ngarobah fungsi waktu kana wujud fungsi frékuénsi.
Dina matématika, lamun fungsi périodik bisa diwincik kana sajumlah dérét fungsi anu disebut deret Fourier ku rumus mangka géneralisasi pikeun fungsi non-périodik bisa dilakukeun maké rumus nu disebut transformasi Fourier. Jadi transformasi Fourier mangrupa generalisasi tina dérét Fourier
Remove ads
Définisi
Lamun x(t) mangrupa hiji sinyal non-périodik. Mangka transformasi Fourier x(t), anu dilambangkeun ku , didéfinisikeun ku
Kabalikan transformasi Fourier dilambangkeun ku sarta didéfiniskieun kieu:
- pikeun tiap angka ril t.
di mana disebut pasangan transformasi Fourier.
Remove ads
Sifat Transformasi Fourier
Urang ngagunakeun perlambang pikeun ngalambangkeun yén x(t) jeung X(ω) mangrupa pasangan transformasi Fourier.
1. Liniéritas (superposisi):
2. Kakalian
(konvensasi normalisasi uniter) (konvensi non-uniter) (frékuénsi biasa)
3. Modulasi:
4. Géséran waktu
5. Géséran frékuénsi:
6. Skala:
7. Lawan / kabalikan waktu:
8. Dualitas:
9. Diferensiasi waktu:
10. Diferensiasi frékuénsi:
11. Integrasi:
Remove ads
Transformasi Fourier tina sawatara sinyal nu mangfaat
Remove ads
Tempo ogé
- Dérét Fourier
- Transformasi Fourier gancang (Fast Fourier transform, FFT)
- Transformasi Laplace
- Transformasi Fourier diskrit
- Transformasi Fourier fraksional
- Transformasi kanonik liniér
- Transformasi sinus Fourier
- Transformasi Fourier laun (Short-time Fourier transform)
- Pamrosésan sinyal analog
Rujukan
- Всё о Mathcad Archived 2019-10-20 di Wayback Machine Citakan:Ref-ru
- Fourier Transforms from eFunda - includes tables
- Dym & McKéan, Fourier Series and Integrals. (For réaders with a background in mathematical analysis.)
- K. Yosida, Functional Analysis, Springer-Verlag, 1968. ISBN 3-540-58654-7
- L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1976. (Somewhat terse.)
- A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4
- R. G. Wilson, "Fourier Series and Optical Transform Techniques in Contemporary Optics", Wiley, 1995. ISBN 0471303577
- R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., Boston, McGraw Hill, 2000.
Remove ads
Tumbu kaluar
- Tables of Integral Transforms at EqWorld: The World of Mathematical Equations.
- (en) Eric W. Weisstein, Fourier Transform di MathWorld.
- Fourier Transform Module by John H. Mathews
- Extending Laplace & Fourier Transforms by Dr. Shervin Erfani
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads