Toppfrågor
Tidslinje
Chatt
Perspektiv

Integralkalkyl

Från Wikipedia, den fria encyklopedin

Integralkalkyl
Remove ads

Integralkalkyl är själva uträkningen av specifika integraler. För enklare integraler kan detta ofta göras direkt med hjälp av resultaten från analysens huvudsats, medan mer komplicerade fall kan kräva partiell integrering eller Fourieranalys.

Thumb

Analysens huvudsats

Huvudartikel: Analysens huvudsats

Sats: Om en funktion f är kontinuerlig i intervallet [a,b] och x är ett tal i intervallet [a,b] så är

en primitiv funktion till f, det vill säga funktionen S är deriverbar med S'(x) = f(x). Analysens huvudsats gör det möjligt att derivera parameterberoende integraler av formen

.
Remove ads

Insättningsformeln

Sammanfatta
Perspektiv

Insättningsformeln följer direkt ur analysens huvudsats, och används i all integralkalkyl.

Sats: Om en funktion f är kontinuerlig i [a,b] och F är en primitiv funktion till f så är

Exempel: Arean under grafen till funktionen f(x) = x2 + 2x på intervallet [2,4] är

Med insättningsformeln kan även integraler på formen

deriveras enligt

Remove ads

Se även

Externa länkar

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads