Toppfrågor
Tidslinje
Chatt
Perspektiv
Schläfli-symbol
Från Wikipedia, den fria encyklopedin
Remove ads
Schläfli-symbolen, uppkallad efter den schweiziske matematikern Ludwig Schläfli[1], är en notation på formen [2] som används för att beskriva regelbundna polygoner, polyedrar, polytoper och tessellationer.

Om är ett naturligt tal betecknar Schläfli-symbolen en regelbunden polygon, en -hörning.
Är ett oreducerbart[3] heltalsbråk betecknar en regelbunden stjärnpolygon med hörn, där anger till vilket hörn en sida ansluter. är alltså en femhörnig stjärnpolygon (ett pentagram), medan , det vill säga en vanlig regelbunden femhörning.
Schläfli-symbolen betecknar en kropp eller tessellation bestående av regelbundna -hörningar (eller om det är ett bråk regelbundna stjärnpolygoner) där anger hur många sådana som möts i varje hörn (eller snarare vilken vertexfigur[4] hörnet har).
En inversion av Schläfli-symbolen, det vill säga att elementen anges i omvänd ordning, ger den duala polytopen. Så anger exempelvis en kub och en oktaeder, som är kubens duala polyeder. På samma sätt är tessellationen av planet med regelbundna sexhörningar och dess dual tessellationen av planet med liksidiga trianglar. Om Schläfli-symbolen för en figur är symmetrisk under inversion innebär det att figuren är självdual; som tessellationen av planet i kvadrater eller tetraedern .
I två dimensioner finns det de tre nyssnämnda tessellationerna av planet med liksidiga trianglar , kvadrater och regelbundna sexhörningar
De regelbundna tredimensionella polyedrarna utgörs av de fem konvexa platonska kropparna: tetraeder , kub och dess dual oktaeder , samt dodekaeder och dess dual ikosaeder .[5] Därutöver finns det de fyra konvexa Kepler-Poinsot-kropparna: Liten stjärndodekaeder med dualen stor dodekaeder och stor stjärndodekaeder med dualen stor ikosaeder .[6]
Fyrdimensionella regelbundna polytoper har Schläfli-symbolen där och , liksom i det tredimensionella fallet, betecknar att stycken -hörningar möts i varje hörn, medan betecknar att stycken -volymer möts längs varje kant. En fyrdimensionell simplex betecknas sålunda och en tesserakt . En simplex är självdual, medan den duala polytopen till tesserakten, som har Schläfli-symbolen och kallas 16-cell eller hexadekakor, består av tetraedrar, , som fyra och fyra möts längs varje kant. Utöver dessa tre finns det tre ytterligare regelbundna konvexa polytoper av dimension fyra: den självduala 24-cellen och det duala paret 120-cellen och 600-cellen med Schläfli-symbolerna , respektive .[7] Därutöver finns det tio regelbundna konkava stjärnpolytoper av dimension fyra.[6]
För regelbundna polytoper av högre dimension () tillkommer ett element i symbolen för varje ytterligare dimension. Detta element anger hur många objekt av dimension som möts vid varje objekt av dimension . En -dimensionell hyperkub har sålunda Schläfli-symbolen med treor. -hyperkuben, dess dual (-hyperoktaedern, -ortoplexen eller -korspolytopen) och den självduala -simplexen är de enda regelbundna polytoperna av dimension fem eller högre.[7] De är samtliga konvexa.
Remove ads
Referenser och noter
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads